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Abstract
Purpose – China has proposed two-stage goals of carbon peaking by 2030 and carbon neutralization
by 2060. The carbon emission reduction effect of the power industry, especially the thermal
power industry, will directly affect the progress of the goal. This paper aims to reveal the spatial-
temporal characteristics and influencing factors of carbon emission efficiency of the thermal
power industry and proposes policy suggestions for realizing China’s carbon peak and carbon
neutralization goals.
Design/methodology/approach – This paper evaluates and compares the carbon emission efficiency of
the thermal power industry in 29 provinces and regions in China from 2014 to 2019 based on the three-stage
slacks-based measure (SBM) of efficiency in data envelopment analysis (DEA) model of undesired output,
excluding the influence of environmental factors and random errors.
Findings – Empirical results show that during the sample period, the carbon emission efficiency of China’s
thermal power industry shows a fluctuating upward trend, and the carbon emission efficiency varies greatly
among the provincial regions. The carbon emission efficiency of the interregional thermal power industry
presents a pattern of “eastern > central > western,” which is consistent with the level of regional economic
development. Environmental factors such as economic level and environmental regulation level are conducive
to the improvement of carbon emission efficiency of the thermal power industry, but the proportion of thermal
power generation and industrial structure is the opposite.

© Guoquan Xu, Shiwei Feng, Shucen Guo and Xiaolan Ye. Published by Emerald Publishing
Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence.
Anyone may reproduce, distribute, translate and create derivative works of this article (for both
commercial and non-commercial purposes), subject to full attribution to the original publication
and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/
4.0/legalcode

The authors would like to thank the anonymous reviewers for their comments and suggestions.
This research was funded by the National Social Science Fund of China(19BGL097).

SBM–DEA
model

247

Received 18 August 2022
Revised 19 September 2022

10 October 2022
Accepted 11 October 2022

International Journal of Climate
Change Strategies and

Management
Vol. 15 No. 2, 2023

pp. 247-263
EmeraldPublishingLimited

1756-8692
DOI 10.1108/IJCCSM-08-2022-0115

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/1756-8692.htm

http://dx.doi.org/10.1108/IJCCSM-08-2022-0115


Originality/value – This paper adopts the three-stage SBM–DEA model of undesired output and takes
CO2 as the undesired output to reveal the spatial-temporal characteristics and influencing factors of carbon
emission efficiency in China’s thermal power industry. The results provide a more comprehensive perspective
for regional comparative evaluation and influencing factors of carbon emission efficiency in China’s thermal
power industry.

Keywords Thermal power industry, Carbon emission, Three-stage SBM–DEA

Paper type Research paper

1. Introduction
In 2020, the carbon emissions of China’s power industry will account for 40% of the total
emissions of the national energy industry, and the power industry has always been the
industry with the largest carbon dioxide emissions in China and the world (Chen et al., 2020).
China proposes a two-stage goal of peaking carbon dioxide emissions in 2030 and achieving
carbon neutrality by 2060. The emission reduction effect of the power industry will directly
affect the progress of the goal.

At present, power generation based on clean and renewable energy is far from meeting
China’s industry power demand and daily power needs, and thermal power generation is still the
main way of power supply. The China Electricity Council released the “Summary of Power
Industry Operation from January to November 2020,” showing that by the end of November
2020, the installed capacity of power plants with an installed capacity of 6,000 kilowatts and
above in China had reached 2.02 billion kilowatts, and the installed capacity of thermal power had
reached 1.23 billion kilowatts, accounting for nearly 60%. Thermal power plants that burn fossil
fuels release a large amount of carbon dioxide, and carbon emission reduction in the thermal
power industry is one of the key links to achieving a carbon peak in China.

As the main indicator for evaluating industry carbon emissions, carbon emission efficiency
has more advantages than other indicators. Scientifically evaluate the carbon emission efficiency
of the thermal power industry, conduct dynamic comparative analysis from time and space,
reveal the main factors affecting carbon emissions of China’s thermal power industry and put
forward countermeasures and suggestions in a targetedmanner, which is of great significance for
promoting carbon emission reduction and sustainable development of China’s power industry.

2. Literature review
At present, many scholars have carried out a lot of research on the evaluation of carbon
emission efficiency from different angles. According to the existing research, it can be
divided into two categories:

(1) single-factor carbon emission efficiency measurement; and
(2) multifactor carbon emission total factor efficiency evaluation.

2.1 Single-factor carbon emission efficiency measurement
It is through the traditional single-factor carbon emission efficiencymeasurement indicators, such
as the perspective of carbon productivity, that is, the proportion of gross domestic product (GDP)
to total carbon dioxide emissions during the same period (Kaya andYokobori, 1997).

Some scholars measure and analyze carbon productivity at the national level. Jahanger
et al. (2021) applied a panel threshold model to estimate the threshold effect of globalization
on carbon productivity in China. The results show that China’s carbon productivity has
increased, while the pattern of economic growth has developed toward the direction of low
carbon. Using the data of China’s input–output table from 2002 to 2017, Guo et al. (2021)
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measured the evolution characteristics and influencing factors of carbon productivity from
the perspective of China’s industrial sector’s implied carbon emissions. Based on the
industry level, Coderoni and Vanino (2022) used individual farm data extracted from the
Italian Farm Accounting Data Network between 2008 and 2017 to analyze the relationship
between carbon productivity and farm economic performance to study green growth in
agricultural production. Jung et al. (2021) used firm-level emissions and corporate variables
to investigate how the development of an emissions trading scheme affects carbon
productivity. Bagchi et al. (2022) studied the carbon emission estimation and carbon
productivity of Indian manufacturing industry from the firm level.

Another example is carbon emission intensity, which is the number of carbon emissions
corresponding to a unit of GDP per capita (Sun, 2005). Ibrahim (2018) took 62 middle-income
countries as samples and found that international trade and financial development played an
interactive and complementary role in reducing the carbon dioxide intensity of energy use.
Muttakin et al. (2020) studied the relationship between national election system and enterprise
greenhouse gas emission intensity and discussed whether this relationship was affected by
enterprise political donations. In terms of method, some scholars analyze the driving
mechanism and impact of carbon emission intensity from the perspective of spatial effect by
constructing a spatial Durbin model (Xiao et al., 2019; Xue et al., 2020; Muhammad et al., 2021).
Alex and Emmanuel (2019) applied artificial neural network (ANN)model to predict the growth
of carbon dioxide emission intensity in Australia, Brazil, China, India and the USA. Laskar et al.
(2022) studied the impact of carbon emission intensity of the top 100 companies listed on the
Bombay Stock Exchange on corporate performance by using the system generalized method of
moment model. Ali et al. (2022) used dynamic auto regressive distributed lag simulation
technology to research and found that there is a long-term correlation between China’s
renewable and nonrenewable energy consumption and carbon emission intensity.

The single-factor carbon emission efficiency measurement is mostly expressed as the
ratio of total carbon dioxide emissions to a certain factor. The advantage of single-factor
carbon emission efficiency measurement is that the indicator data is easy to collect and easy
to understand and operate. The disadvantage is that too few elements are considered, and
there are inevitably relatively thin, limited and one-sided, resulting in different results from
the actual situation.

2.2 Multifactor carbon emission total factor efficiency evaluation
Multifactor carbon emission total factor efficiency evaluation is evaluated by constructing a
carbon emission efficiency index that includes a number of relevant factors, that is, a total
factor framework system.

Some scholars have systematically and comprehensively studied carbon emissions by
building a total factor framework to find out the main factors affecting carbon emissions
(Loganathan et al., 2020; Ngo, 2021; Pan et al., 2022). The data envelopment analysis (DEA)
model and its derivative models are often used in the study of carbon emission efficiency.
Li et al. (2019) used the DEA method to evaluate the carbon emission efficiency of each
province and empirically investigated the impact of urbanization on carbon emission
efficiency based on the stochastic impacts by regression on population, affluence, and
technology extension. Atta et al. (2022) evaluated the operational efficiency of Chinese listed
real estate companies through SBM–DEA model and panel regression technology and
studied its driving factors. To better evaluate the results, the carbon emission efficiency is
measured and analyzed by constructing a super-efficiency SBM model (Zhou et al., 2019;
Asmita and Dharmesh, 2019). Combined with the Malmquist index, the carbon emission
efficiency is evaluated from a static and dynamic point of view (Wang and Feng, 2020; Park
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and Kim, 2021). Zhang and Xu (2022) calculated the carbon emission efficiency of the Yellow
River Basin from 2005 to 2019 based on the SBM–directional distance function model and
the Malmquist–Luenberger index and measured the influencing factors of carbon emission
efficiency through the Tobit model. Zaim and Taskin (2000) defined carbon emissions for
the first time as undesired outputs, that is, undesired production results. Iftikhar et al. (2016)
conducted static and dynamic analysis on energy and carbon dioxide emission efficiency of
major economies based on DEA–SBMmodel. The carbon emission efficiency was evaluated
based on the undesired output Epsilon-based measure (EBM)–DEA model, and the
influencing factors were analyzed through the regression model (Zeng et al., 2019; Xue et al.,
2021; Zhao et al., 2022).

Many scholars also use the three-stage DEA model to measure and evaluate carbon
emission efficiency for more accurate results (Surakiat et al., 2018; Zhou and Yu, 2021).
Kannan et al. (2021) measured the efficiency of electric power enterprises through the three-
stage virtual frontier DEA (3S-VF-DEA) and then ranked electric power companies using
the efficiency measurement results. Some scholars have combined the three-stage DEA
model with other models to study carbon emission efficiency. Hu et al. (2020) measured the
embodied carbon emission efficiency of China’s export trade and analyzed its influencing
factors by combining the three-stage DEA model with the noncompetitive I–O model. The
carbon emission efficiency was measured through the three-stage DEA model, and the
influencing factors of carbon emission efficiency were analyzed through the regression
model (Zhu et al., 2021; Zhang et al., 2021). Yi et al. (2021) used the three-stage DEA–
Malmquist model to estimate the dynamic carbon emission efficiency of China’s logistics
industry from 2001 to 2017 and then used the DagumGini coefficient method, kernel density
estimation and panel vector autoregression model to analyze the regional difference
decomposition and its forming mechanism. In general, domestic and foreign scholars use
different types of DEAmodels to analyze and study China’s carbon emission efficiency.

The advantage of the multifactor carbon emission fullfactor efficiency evaluation is that
through a more comprehensive calculation and evaluation of carbon emission efficiency
through multiple factors, the measurement results are more accurate. The disadvantage is
that it is difficult to collect data because of a large number of indicators, and in terms of
indicator selection, there may be correlation or intersection between indicators, resulting in
unsatisfactory regression results.

Most scholars pay more attention to the research on carbon emissions in the regional power
industry, but there are relatively few studies on the carbon emissions efficiency of regional
thermal power generation. The traditional SBM–DEA model does not take into account the
influence of environmental factors and random errors, which leads to deviations in
the calculation results. Therefore, different from previous research, this paper attempts to use
the three-stage SBM–DEA model of undesired output, taking CO2 as the undesired output, to
compare and evaluate the carbon emission efficiency of the thermal power industry in 29
provinces and cities in China from 2014 to 2019, revealing the spatiotemporal characteristics
and influencing factors of carbon emission efficiency in China’s thermal power industry and
the corresponding carbon emission reduction strategies for the thermal power industry are
proposed, which has important practical significance for promoting the realization of energy
conservation and emission reduction in China’s thermal power industry.

3. Research methods
The traditional DEA model and various DEAmodels derived from it measure the efficiency
from the radial and angular aspects of the input–output ratio, but such models do not take
into account the inefficiency caused by the slack of input and output factors. Kaoru (2001)
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proposed the SBM model, which solved this problem very well. Compared with the
traditional DEA model, the nonradial, angle-free SBM model is dimensionless and avoids
the influence of different dimensions and selection angles. Therefore, based on the
interprovincial panel data of the thermal power industry in 29 provinces and cities from
2014 to 2019, this paper attempts to use the three-stage SBM–DEA model of undesired
output to calculate and evaluate the carbon emission efficiency of the thermal power
industry in each province and city.

3.1 First stage: SBM–DEA model of undesired output
Through the SBM–DEA model of undesired output, the initial efficiency value, input slack
variable, expected output slack variable and undesired output slack variable are calculated.
Themodel form is as follows:

minr ¼
1� 1

m

Xm
i¼1

si�
.
xi0

1þ 1
q1þ q2

Xq1
r¼1

srþ
.
yr0

þ
Xq2
t¼1

stb�
.
bt0

 !

s:t:

Xn
j¼1

xjlj þ s� ¼ x0 i ¼ 1; � � � ;mð Þ

Xn
j¼1

yjlj � sþ ¼ y0 r ¼ 1; � � � ; q1ð Þ

Xn
j¼1

bjlj þ sb� ¼ b0 t ¼ 1; � � � ; q2ð Þ

lj; si�; srþ; stb� � 0 j ¼ 1; � � � ; nð Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(1)

In the formula: r is the carbon emission efficiency value to be calculated, the value range is
0–1; j is each decision-making unit; n is the number of decision-making units; m is the
number of input indicators, q1, q2 represent the number of indicators of expected output and
undesired output; si� is the input slack variable; srþ, stb� are the slack variables of expected
output and undesired output; lj is the intensity variable; xj, yj and bj are the m-dimensional
input vector, the q1-dimensional expected output variable and the q2-dimensional undesired
output variable of the jth decision-making unit respectively; x0, y0 and b0 represent the input
variables, expected output variables and undesired output variables of the evaluated
decision-making unit.

The validity of the model efficiency is judged as follows:
� If<1, the evaluated decision-making unit is invalid.
� If = 1, the evaluated decision-making unit is valid, and the slack variables of input

variables, expected output and undesired output variables are all 0.

It can be seen from the model that the slack variables of input and output are included in the
model, which not only solves the slack problem of input and output in the traditional DEA
model but also solves the problem of undesired output in the production process.
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3.2 Second stage: building the SFA regression model
The efficiency values measured in the first stage include the influence of environmental
factors and random errors. If all the influences are attributed to management inefficiency,
the calculation relative lacks rigor, which may cause large errors in the results. Therefore,
the influence of environmental factors and random noise must be eliminated. Fried et al.
(2002) solved this problem very well by constructing the Stochastic Frontier analysis (SFA)
regression model, analyzing relevant environmental variables and adjusting the initial
input–output variables. Build the following regression function:

Smi ¼ f Zi;bmð Þ þ �mi þ mmi m ¼ 1; 2; � � � ;M ; i ¼ 1; 2; � � � ; Ið Þ (2)

In the formula: Smi is the slack variable of them input of the i decision unit; Zi represents the
environmental variable and bm represents the coefficient of the environmental variable; vmi
reflects the random noise and mmi reflects the management inefficiency, the former obeys a
normal distribution, the latter assumes that it obeys a half-normal distribution truncated at
0, that ismmi�Nþ 0;sm

2
� �

. Also, assume that vmi andmmi are independent of each other, and
their sum represents the mixed error term. To eliminate the effects of environmental
variables and random noise, environmental variables, management inefficiencies and
random noise need to be separated. The derivation formula of separation management
inefficiency is as follows:

E mj«ð Þ ¼ s*
f l «

s

� �
f l «

s

� �þ l«

s

" #
(3)

In the formula, s* ¼ sms�

s , s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm

2 þ s�
2

p
, l ¼ sm=s�

, « =mmiþ vmi. Then, the calculation
formula of the separated random error term is:

E �mi= �miþmmið Þ
h i

¼ Smi � f Zi;bmð Þ � E mmi= �miþmmið Þ
h i

(4)

After eliminating environmental variables and random noise, the input variables are
adjusted so that all decision-making units are in the same external environment. The input
variable adjustment formula is:

XA
mi ¼ Xmi þ max f Zi;bmð Þ½ � � f Zi;bmð Þ� �þ max �mið Þ � �mi½ � (5)

In the formula: XA
mi and Xmi are input variables after treatment and before treatment.

{max[f(Zi;bm)] � f(Zi;bm)} represents the environment variable after processing, and
[max (vmi)� vmi] represents the random noise after processing. At this time, all decision-
making units will be in the same external environment, which ensures that the
measured efficiency value is close to the actual value.

3.3 Third stage: the adjusted data envelopment analysis model
In the second stage, the regression analysis of the SFA model is constructed to eliminate the
influence of environmental factors and random errors. The adjusted input variables and the
original output variables are processed through the first-stage model again to measure all
decision-making units. Compared with the first stage, the results obtained after recalculation
are more accurate and true.
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4. Variable selection and data collection
Given the lack of data in Tibet, Hong Kong, Macao and Taiwan regions and the particularity
of the capital Beijing, they are not included in the scope of the study. By collecting and
processing the relevant panel data of the thermal power industry in 29 provinces and cities
across the country from 2014 to 2019, the carbon emission efficiency of the thermal power
industry in each province and city is measured and evaluated. The measurement indicators
of the carbon emission efficiency of China’s thermal power industry are divided into input
indicators and output indicators, and output indicators are further divided into expected
output indicators and undesired output indicators. The specific indicators and data are
selected as follows.

4.1 Selection of input variables
In the existing literature, although the research focuses of different scholars are different, the
choices of input variables are generally capital, labor and energy. In this paper, the installed
capacity of the thermal motor is used as the capital input; the labor input selects the number
of employees in the thermal power industry, but because of the lack of special statistics, this
paper replaces the number of employees in the thermal power industry with the number of
employees engaged in electricity, heat production and supply and the unit is ten thousand;
the total energy consumption of thermal power generation is used as energy input and the
unit is ten thousand tons of standard coal.

4.2 Selection of output variables
In the production process, in addition to the expected output, there are often undesired
outputs. In this paper, the power generation of thermal power generation is regarded as the
expected output and the carbon dioxide emissions generated by the total energy
consumption of thermal power generation in the energy balance sheet of each region are
regarded as the undesired output. Since there is no direct carbon emission data in China, to
calculate the carbon dioxide emissions of the thermal power industry in various provinces
and cities, this paper adopts the carbon dioxide calculation formula and carbon emission
coefficient proposed in the 2006 “IPCC Guidelines for National Greenhouse Gas Emission
Inventory.”

4.3 Selection of environment variables
The selection of environmental variables should be objective and follow the principle of
influence rather than the control of decision-making units. Therefore, environmental
variables that can affect the carbon emission efficiency of thermal power generation but
cannot be controlled subjectively should be selected. The environmental variables selected
in this paper are as follows: the level of economic development is the per capita GDP of each
province and city, and the unit is yuan; the proportion of thermal power generation is
expressed as the proportion of electricity generated by burning fossil fuels to the total power
generation; the industrial structure is expressed by the proportion of secondary industry; the
proportion of investment in environmental pollution control in each province and city in
GDP represents the level of environmental regulation.

The data on the above input variables, output variables and environmental variables are
all from the official website of the National Bureau of Statistics, “China Statistical
Yearbook,” “China Energy Statistical Yearbook,” “China Labor Statistical Yearbook,”
“China Electricity Statistical Yearbook” and “China Environmental Statistical Yearbook.”
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5. Empirical analysis
5.1 First stage: analysis of empirical results of the model before adjustment
According to the undesired SBM–DEAmodel, this paper uses the softwareMaxDEAUltra 8
to calculate the initial carbon emission efficiency value of the thermal power industry in
various provinces and cities across the country from 2014 to 2019. The calculation results
are shown in Table 1.

5.1.1 Empirical analysis based on time dimension. According to the evaluation results in
Table 1, during the sample period, the efficiency value of all years in Jiangsu is equal to 1,
indicating that the carbon emission efficiency of the thermal power industry in Jiangsu
Province is effective and at the forefront of efficiency. The average efficiency values of
Hebei, Ningxia and Shandong are all around 0.97, which is close to the efficiency frontier.
The efficiency values of Ningxia and Hebei are all valid in other years except for some years.

In Hebei province, the carbon emission efficiency value of the thermal power industry
increased from 0.767 in 2014 to 1 in 2019 and the efficiency value increased by 0.233. This is
because the proportion of thermal power generation in Hebei province decreased from
92.6% in 2014 to 84.5% in 2019, a large decrease. The proportion of other clean energy

Table 1.
Carbon emission
efficiency values of
the thermal power
industry in 29
provinces and cities
in China (the first
stage)

Provinces and cities 2014 2015 2016 2017 2018 2019 Mean

Tianjin 0.705 0.869 1.000 0.834 1.000 1.000 0.901
Hebei 0.767 1.000 1.000 1.000 1.000 1.000 0.961
Shanxi 0.809 0.777 0.684 0.674 0.679 0.681 0.717
Inner Mongolia 0.790 0.768 0.654 0.685 1.000 1.000 0.816
Liaoning 0.533 0.617 0.591 0.569 0.544 0.580 0.572
Jilin 0.395 0.428 0.419 0.388 0.434 0.482 0.424
Heilongjiang 0.449 0.510 0.491 0.469 0.559 0.522 0.500
Shanghai 0.786 0.946 0.926 0.816 0.791 0.874 0.856
Jiangsu 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Zhejiang 0.834 1.000 1.000 0.860 0.831 0.897 0.904
Anhui 0.807 0.847 0.798 0.820 0.811 1.000 0.847
Fujian 0.733 0.716 0.604 0.656 0.689 0.723 0.687
Jiangxi 0.597 0.700 0.767 0.738 0.764 0.809 0.729
Shandong 1.000 1.000 1.000 1.000 0.967 0.891 0.976
Henan 0.620 0.660 0.614 0.605 0.626 0.631 0.626
Hubei 0.576 0.718 0.711 0.637 0.679 0.758 0.680
Hunan 0.540 0.610 0.580 0.584 0.636 0.643 0.599
Guangdong 0.694 0.856 1.000 0.756 0.769 0.823 0.816
Guangxi 0.612 0.684 0.577 0.540 0.575 0.662 0.608
Hainan 0.794 1.000 0.696 0.611 0.643 0.697 0.740
Chongqing 0.553 0.634 0.601 0.565 0.621 0.648 0.604
Sichuan 0.465 0.520 1.000 1.000 1.000 0.565 0.758
Guizhou 0.535 0.528 0.494 0.490 0.524 0.574 0.524
Yunnan 0.369 0.382 0.346 0.312 0.329 0.351 0.348
Shaanxi 1.000 0.771 0.805 0.769 0.687 0.717 0.792
Gansu 0.500 0.580 0.539 0.481 0.515 0.533 0.525
Qinghai 0.554 0.555 0.546 0.543 0.494 0.467 0.526
Ningxia 1.000 1.000 0.777 1.000 1.000 1.000 0.963
Xinjiang 0.720 0.860 0.746 0.732 0.768 0.937 0.794
Mean 0.681 0.743 0.723 0.694 0.722 0.740
Eastern Region 0.784 0.900 0.882 0.810 0.823 0.848
Central Region 0.599 0.656 0.633 0.614 0.648 0.691
Western Region 0.645 0.662 0.644 0.647 0.683 0.678
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generation increased, which improved the carbon emission efficiency of the thermal power
industry in Hebei Province.

The carbon emission efficiency of the thermal power industry in Shandong province was
effective from 2014 to 2017, while the efficiency values in 2018 and 2019 were invalid. This
indicates that although Shandong has made relevant efforts in improving efficiency, energy
saving and emission reduction in these two years, the results are not satisfactory. It is likely
to be caused by too much investment in thermal power energy consumption and human
resources or the thermal power industry is in a relatively poor environment, there is still a lot
of room for improvement in the carbon emission efficiency of the thermal power industry.

For other provinces and cities, except for Tianjin, Zhejiang, Anhui, Shaanxi and other
cities whose efficiency value is equal to 1 in some years, the remaining carbon emission
efficiency value is invalid. All cities should speed up the adjustment of the energy structure
of the thermal power industry, strengthen regional policies for energy conservation and
emission reduction, accelerate the elimination of outdated thermal power equipment and
technology, and at the same time increase the technological transformation of the thermal
power industry.

5.1.2 Empirical analysis based on spatial dimensions. Table 1 shows that among the 29
provinces and cities, the average carbon emission efficiency of the thermal power industry
in 65.52% of the provinces and cities is less than 0.8; the average carbon emission efficiency
of the thermal power industry in 31.03% of the provinces and cities is between 0.8 and 1; the
average carbon emission efficiency of the thermal power industry in the remaining 3.45% of
provinces and cities is equal to 1. There are fewer provinces and cities at the forefront of
efficiency, and the overall level is not high.

The carbon emission efficiency of the thermal power industry shows great differences
because of different regions. The maximum value of the average efficiency is 1, and the
minimum value is 0.348. Among them, the provinces and cities with an average efficiency
greater than 0.8 are Jiangsu, Ningxia, Shandong, Hebei, Tianjin, Zhejiang, Shanghai, Anhui,
Inner Mongolia, Guangdong, except Ningxia, Anhui and Inner Mongolia, the rest of the
provinces and cities are located in the eastern region.

Regionally, the carbon emission efficiency of the thermal power industry in the eastern
region is generally higher than that in the central and western regions. In addition to the
advantages of advanced thermal power equipment, policies such as energy conservation
and emission reduction are also easier to operate and implement in the relatively
economically developed eastern region.

5.2 Second stage: SFA model regression analysis
The carbon emission efficiency value of the thermal power industry in the first stage is
calculated without removing environmental factors and random noise. The results may
deviate from the true value and do not match the carbon emission levels of the thermal
power industry, so environmental factors, random noise and management inefficiencies
must be separated. In this stage, the selected environmental variables are used as
independent variables to carry out SFA regression analysis on the three input slack
variables of capital stock, labor and energy consumption by using Frontier4.1 software.

The results in Table 2 show that the regression coefficients of environmental variables on
the slack variables of the three inputs have passed the significance test, and the likelihood ratio
(LR) one-sided error test results have passed the 1% significance test, indicating that the
management inefficiency item does exist. The SFA model is reasonable. The g values of the
three regression results of environmental variables on the slack variables of capital, labor and
energy consumption are all around 0.7, close to 1. The results show that the variation of slack
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variables is mainly caused by management inefficiency, so it is necessary to separate
management inefficiency from environmental variables and random noises.

The positive and negative environmental variables coefficients, respectively, reflect the
inhibition and promotion effect on improving the carbon emission efficiency of the thermal
power industry. According to the regression results in Table 2, the effects of various
environmental variables on carbon emission efficiency are different:

� Effects of economic level. The economic level is significantly and negatively
correlated with the three input slack variables, indicating that China’s economic
development mode has improved at this stage. Economic development has
provided financial assistance for thermal power plants, enabling thermal power
plants to speed up the introduction of talents and advanced technologies and
economic development has gradually eliminated high-energy consuming
production equipment, improving the carbon emission efficiency of the thermal
power industry.

� Effects of the proportion of thermal power generation. The proportion of thermal
power generation is significantly and positively correlated with the slack variable of
energy consumption, while it has no significant performance with the capital stock
and labor slack variables. The outdated equipment in individual regions produces
more carbon dioxide in the process of thermal power generation. At the same time,
the increase in the proportion of thermal power generation will generate more
energy consumption, which is not conducive to the improvement of the carbon
emission efficiency of the thermal power industry. The government needs to
optimize the energy structure of the power industry, accelerate the promotion of
clean energy power generation and gradually reduce the proportion of thermal
power generation in power generation.

� Effects of industrial structure. The industrial structure is significantly and
positively correlated with the three input slack variables, indicating that the
increase in the proportion of the secondary industry will lead to an increase in
capital stock, labor consumption and energy consumption, resulting in more waste
of input, which is not conducive to the improvement of carbon emission efficiency of
the thermal power industry. Therefore, it is necessary to adjust the industrial
structure and reduce the proportion of the secondary industry.

Table 2.
Second stage SFA
regression results

Slack variable

Capital stock
slack variable

Labor slack
variable

Energy consumption
slack variable

Coefficient t value Coefficient t value Coefficient t value

Constant term 2,709.11 492.65*** 43.53 2.14** 4,142.58 35.08***
Economic level �322.29 �5.36*** �4.83 �2.73*** �550.75 �2.61***
Proportion of thermal power
generation

�39.80 �0.59 0.29 0.33 597.78 2.74***

Industrial structure 436.47 2.42** 5.81 2.39** 1,098.29 1.67*
Environmental regulation
level

�159.15 �2.26** �1.93 �1.89* 838.95 3.98***

s2 257,303.76 206,954.56*** 48.76 2.91*** 2,242,487.40 1,821,358.90***
g 0.67 17.00*** 0.83 12.53*** 0.69 19.37***
LR 41.73*** 60.80*** 46.98***

Note: ***, ** and * in the upper right corner represent tests with significance levels of 1, 5 and 10%, respectively
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� Effects of environmental regulation level. The level of environmental regulation has a
significant and negative correlation with the slack variable of capital stock and
labor and has a significant and positive correlation with the slack variable of energy
consumption, indicating that the increase in the proportion of investment in
environmental pollution control in GDP is conducive to reducing capital stock and
labor input. Increased investment in environmental pollution control will reduce the
amount of carbon dioxide produced by thermal power generation and improve the
carbon emission efficiency of the thermal power industry in general.

5.3 Third stage: analysis of the empirical results of the adjusted model
After eliminating the influence of environmental factors and random noise in the second
stage, the three input variables of capital, labor and energy consumption were adjusted
through SFA regression analysis and then use MaxDEA Ultra 8 to measure the adjusted
variables. The results are shown in Table 3.

5.3.1 Analysis of empirical results based on time dimension. Compared with the results of
the first stage, the carbon emission efficiency of the thermal power industry measured after
the adjustment in the third stage has changed greatly. The efficiency values of most
provinces and cities are lower than the results of the first stage, but the results are more
objective and show a fluctuating increase as a whole.

Table 3.
Carbon emission

efficiency values of
the thermal power

industry in 29
provinces and cities
in China (the third

stage)

Provinces and cities 2014 2015 2016 2017 2018 2019 Mean

Tianjin 0.358 0.433 0.486 0.375 1.000 1.000 0.609
Hebei 0.749 0.786 0.734 0.792 1.000 1.000 0.844
Shanxi 0.720 0.764 0.723 0.701 0.752 0.769 0.738
Inner Mongolia 1.000 0.788 0.744 0.726 0.738 1.000 0.833
Liaoning 0.525 0.582 0.560 0.518 0.569 0.585 0.557
Jilin 0.329 0.349 0.318 0.302 0.379 0.398 0.346
Heilongjiang 0.386 0.434 0.396 0.377 0.473 0.462 0.421
Shanghai 0.436 0.596 0.566 0.437 0.501 0.523 0.510
Jiangsu 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Zhejiang 0.760 1.000 1.000 0.778 0.824 0.857 0.870
Anhui 0.684 0.753 0.746 0.720 0.780 0.789 0.745
Fujian 0.557 0.568 0.471 0.498 0.619 0.630 0.557
Jiangxi 0.410 0.490 0.521 0.475 0.571 0.584 0.508
Shandong 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Henan 0.729 0.782 0.740 0.689 0.765 0.747 0.742
Hubei 0.482 0.595 0.599 0.497 0.601 0.656 0.572
Hunan 0.416 0.453 0.422 0.418 0.520 0.521 0.458
Guangdong 0.809 1.000 1.000 0.824 0.936 1.000 0.928
Guangxi 0.403 0.461 0.399 0.357 0.474 0.528 0.437
Hainan 0.167 0.244 0.164 0.141 0.195 0.197 0.185
Chongqing 0.283 0.341 0.311 0.291 0.389 0.395 0.335
Sichuan 0.326 0.319 1.000 1.000 1.000 0.390 0.672
Guizhou 0.471 0.487 0.477 0.440 0.521 0.553 0.491
Yunnan 0.242 0.214 0.166 0.154 0.223 0.237 0.206
Shaanxi 0.555 0.651 0.655 0.619 0.667 0.705 0.642
Gansu 0.386 0.435 0.395 0.356 0.443 0.442 0.410
Qinghai 0.099 0.113 0.120 0.119 0.126 0.109 0.114
Ningxia 0.483 0.508 0.469 0.457 0.561 0.569 0.508
Xinjiang 0.613 0.724 0.706 0.676 0.729 0.746 0.699
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The provinces with the adjusted carbon emission efficiency value of the thermal power
industry equal to 1 are Jiangsu and Shandong, and the efficiency values in all years are
equal to 1, indicating that the efficiency values of these two provinces are valid each year. In
the first stage, although the average efficiency value of Shandong Province is close to the
frontier, its efficiency value is decreasing year by year, while in the third stage, the efficiency
value of Shandong Province is at the frontier of efficiency. The improvement of Shandong’s
efficiency value in the third stage shows that the low efficiency in the first stage is not
entirely caused by its management inefficiency, but may be related to its poor external
environment. The mean carbon emission efficiency of the thermal power industry in
Guangdong also increased from 0.816 in the first stage to 0.928 after adjustment, indicating
that the low efficiency in the first stage is similar to that in Shandong, and it may also be
caused by the poor external environment.

In the results of the third stage, the average efficiency of most provinces and cities
decreased. Compared with the first stage, the carbon emission efficiency of Ningxia changed
greatly, and the average efficiency decreased from 0.963 to 0.508. Tianjin’s average carbon
emission efficiency also dropped from 0.901 to an adjusted 0.609. After removing
environmental factors and random noise, the overall efficiency of these provinces and cities
has decreased. This indicates that the higher efficiency in the first stage may be because of a
relatively good external environment.

5.3.2 Analysis of empirical results based on spatial dimensions. Because of the different
geographical locations, economic development levels and resource scarcity of different
provinces and cities, there are also differences in the carbon emission efficiency of the
thermal power industry in different provinces and cities. This paper divides the regions into
eastern, central and western regions according to the traditional division method, to analyze
the regional differences in the carbon emission efficiency of the thermal power industry.
According to the carbon emission efficiency measurement results of the thermal power
industry in each province and city in Table 3, the carbon emission efficiency of the thermal
power industry in the three major regions from 2014 to 2019 can be obtained. The results are
shown in Table 4 and Figure 1.

Figure 1 shows that, from 2014 to 2019, the carbon emission efficiency of the thermal power
industry in the eastern, central and western regions kept rising with fluctuations, which shows
that the national energy conservation and emission reduction work has achieved remarkable
results in recent years. The carbon emission efficiency of the thermal power industry in the
three major regions of the eastern, central and western regions presents a spatial pattern of
“eastern> central>western,”which is consistent with the economic development pattern.

The economic development level of the eastern region is relatively high, and the low-
carbon concept in the eastern region is more advanced than that of the central and western
regions. In the thermal power industry, the eastern region actively eliminates small- and
medium-sized thermal power plants with relatively backward technology, constantly
improves power generation technology, optimizes the structure of coal used for power
generation and uses clean coal. Therefore, the overall efficiency is higher than that in the

Table 4.
Carbon emission
efficiency of eastern,
central and western
thermal power
industry (2014–2019)

Three regions 2014 2015 2016 2017 2018 2019

Eastern region 0.636 0.721 0.698 0.636 0.764 0.779
Central region 0.519 0.577 0.558 0.522 0.605 0.616
Western region 0.442 0.458 0.495 0.472 0.534 0.516
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central and western regions. The economic development level of the western region is
relatively low, the proportion of small- and medium-sized thermal power plants is still
relatively large, and the update speed of thermal power technology is relatively slow, which
hinders the improvement of the carbon emission efficiency of the thermal power industry.

6. Conclusions and recommendations
This paper analyzes the main influencing factors of carbon emission efficiency from the time
dimension and space dimension, supplements the theoretical system of carbon emission
efficiency and influencing factors in the thermal power industry and provides a certain
reference for future research. The research on the carbon emission efficiency of the thermal
power industry can help to find ways and methods to improve the carbon emission
efficiency of the thermal power industry and provide a certain reference for the government
to formulate and implement energy saving and emission reduction strategies of the thermal
power industry with regional characteristics. The conclusions are as follows:

� Structural factors such as industrial structure and energy structure are unfavorable
to the carbon emission efficiency of China’s thermal power generation. During the
sample period, among the external environmental factors, the economic level and
the level of environmental regulation are conducive to improving the carbon
emission efficiency of the thermal power industry, which are the external
environmental factors of advantage. Economic development provides support for
the technological transformation of thermal power plants as the mode of economic
development has been improved. At the same time, the increase in the proportion of
investment in pollution control promotes thermal power plants to speed up the
introduction of talents and advanced technologies and eliminate high-energy-
consuming production equipment, while the proportion of thermal power generation
and the industrial structure are not conducive to improving the carbon emission
efficiency of the thermal power industry, which are the external environmental
factors of disadvantage. At this stage, the proportion of thermal power generation is

Figure 1.
Carbon emission

efficiency trend of the
thermal power

industry in eastern,
central andwestern
regions (2014–2019)
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still relatively large, and the use of clean energy is worthy of further promotion. The
increase in the proportion of the secondary industry leads to more waste of energy
consumption and other inputs, which is not conducive to the improvement of carbon
emission efficiency.

� In terms of the time dimension, the carbon emission efficiency of the thermal power
industry in China’s provinces has been improved interactively. The carbon
emission efficiency of the thermal power industry in Jiangsu and Shandong is
relatively effective, and the efficiency value in each period is equal to 1, which is at
the forefront of efficiency. The carbon emission efficiency value of the thermal
power industry in other provinces and cities is relatively low, but it has been
improved interactively. All provinces and cities should strengthen the promotion of
regional energy conservation and emission reduction policies, actively eliminate
small- and medium-sized thermal power plants with relatively backward
technology, constantly improve power generation technology and optimize the
structure of coal for power generation.

� In terms of spatial dimension, there are large differences in the carbon emission
efficiency levels of the thermal power industry between regions. The carbon
emission efficiency of the thermal power industry in the three regions presents a
spatial pattern of “eastern > central > western,” which is consistent with the
economic development pattern. This is because the economic development level of
the eastern region is relatively high, and the low-carbon concept should be advanced
in the central region. In the thermal power industry, small and medium-sized
thermal power plants with relatively backward technologies are actively eliminated,
the power generation technology is continuously improved, the structure of coal
used for power generation is optimized and clean coal is used. Therefore, the
average carbon emission efficiency is higher than that in the central and western
regions.

Based on this, this paper puts forward several suggestions:
� Maintaining a good external environment. The level of economic development is

conducive to improving the carbon emission efficiency of the thermal power
industry. The introduction of technical talents and capital investment in the thermal
power industry should be increased, and the power generation technology should be
continuously improved. The level of environmental regulation plays an important
role in improving the carbon emission efficiency of China’s thermal power industry.
The promotion of relevant emission reduction measures in the thermal power
industry should be strengthened and scientific and reasonable environmental
regulation policies should be formulated. The government should actively eliminate
small and medium thermal power plants with relatively backward technology by
introducing advanced thermal power generation equipment and improving the
utilization rate of coal combustion in the process of power generation, thereby
reducing carbon dioxide emissions in the thermal power generation link and
improving the overall carbon emission efficiency of the thermal power industry.

� Improving the adverse external environment. The industrial structure should be
adjusted to improve power utilization efficiency, to improve the carbon emission
efficiency of the thermal power industry. Optimize the structure of coal for power
generation and use clean coal. At the same time, vigorously develop new clean
power sources such as hydropower, wind power and nuclear power and gradually
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replace the dominant position of thermal power generation in power generation, to
achieve carbon emission reduction in the power industry.

� Implementing differentiated emission reduction in different regions. All regions
should strengthen personnel exchanges and cooperation and learn from each other
advanced thermal power technology and management experience based on
personnel training. By introducing advanced technologies and equipment from
developed regions, underdeveloped regions will gradually narrow the gap with
developed regions and improve the carbon emission efficiency of the regional
thermal power industry. In general, according to their actual conditions, each
region should accelerate the upgrading and transformation of power generation
technology in the regional thermal power industry, formulate differentiated
emission reduction plans, explore new models of interregional energy
cooperation and actively coordinate investment in new interregional UHV
transmission channels to achieve coordinated emission reduction of the
interregional thermal power industry.
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