Search results

1 – 10 of 17
Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 May 2023

Ahmad Reza Roozbehi, Mohammad Zabetian Targhi, Mohammad Mahdi Heyhat and Ala Khatibi

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat…

Abstract

Purpose

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat sink with single-phase water coolant in a laminar regime. The heat sink performance evaluation criteria have been investigated for the parametric effects of vertex angle θ (10–120) and relative length (RL) (0.25–9) of hexagonal pin fins.

Design/methodology/approach

To carry out research and reduce the computational cost, only one heat sink unit is simulated and analyzed using periodic boundary conditions on the side walls and includes a hexagonal pin fin and half channel on both sides to reflect the structural characteristics completely. The governing equations are also solved using finite volume method.

Findings

The results reveal that θ = 60 and RL = 1 yield the optimum thermal performance and heat sink performance is significantly influenced by the vertex angle and RL. The modified hexagon geometry improves fluid flow behavior by reducing the volume of the recirculation region behind the pin fin, preventing its effects on the downstream pin fins and restricting the thermal boundary layer development on its straight side. At Re = 1,000, the modified geometry enhances the average Nusselt number by 24.46% and the thermal performance factor by 23.89%, demonstrating the potential of modified hexagonal pin fins to enhance micropin fin heat sink performance.

Originality/value

Prior studies suggest using the pin fins with a regular hexagonal cross-section to obtain better thermal performance. However, this comes with a higher pressure drop penalty. The modification of the hexagonal pin fin geometry has been investigated in this numerical study to enhance both the thermal and hydraulic performance of the micropin fin heat sink. Because little attention has been paid to the modification of the regular hexagonal pin fins, as a geometry inspired by natural honeycomb structures, its design optimization is relatively scarce, and a gap was felt in this field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2023

Ahmed Youcef, Rachid Saim and Hakan F. Öztop

The purpose of this paper is to give a comparison between different type of baffles for a better application. Computational analysis of heat transfer and fluid flow through plain…

Abstract

Purpose

The purpose of this paper is to give a comparison between different type of baffles for a better application. Computational analysis of heat transfer and fluid flow through plain, flower and perforated baffles for heat exchanger.

Design/methodology/approach

Numerical simulations for heat exchangers with plain, flower and perforated baffles are carried out with finite volume method. The thermal-hydraulic performance for the three types is presented in the same conditions.

Findings

The perforated baffles generate low shell pressure with high Nusselt number; transverse baffles give the best heat transfer with high pumping power. The overall performance coefficient of these three types of heat exchangers shows that the perforated baffles have a highest and the transverse baffles have the lowest. Analysis of the results show that perforated transverse baffles produce pressure drop lower by 6.68% than transverse baffles and 2.64% lower than flower baffles. The pumping power for perforated transverse baffles lower by 13.3% to the transverse baffles and 4.72% lower than that of flower baffles. The Nusselt number for perforated baffles higher by 4.16% to the flower baffles and 2.77% with transverse baffles. The overall performance factor in the heat exchanger with perforated baffles higher by 5.55% to that with transverse baffles and 3.46% with flower baffles. Recirculation areas are reduced in shell with perforated baffles and velocity distribution becomes more uniform.

Originality/value

Using of perforated baffles in heat exchanger give the best overall performance factor.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 March 2023

Amir Rezazad Bari, Mohammad Zabetian Targhi and Mohammad Mahdi Heyhat

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been…

Abstract

Purpose

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been studied, such as secondary flow formation and flow-wall interaction.

Design/methodology/approach

In this study, the effect of hybrid arrangements of elliptical and hexagonal pin-fins with different distribution percentages on flow characteristics and performance evaluation criteria in laminar flow was investigated. Ansys-Fluent software solves the governing equations using the finite volume method. Also, the accuracy of obtained results was compared with the experimental results of other similar papers.

Findings

The results of this study highlighted that hybrid arrangements show higher overall performance than single pin-fin patterns. Among the hybrid arrangements, case 3 has the highest values of performance evaluation criteria, that is, 1.84 in Re = 900. The results revealed that, with the instantaneous change in the pattern from elliptic to hexagonal, the secondary flow increases in the cross-sectional area of the channels, and the maximum velocity in the cross-section of the channel increases. The important advantages of case 3 are its highest overall performance and a lower chip surface temperature of up to about 2% than other hybrid patterns.

Originality/value

Prior research has shown that in the single pin-fin pattern, the cooling power at the end of the heat sink decreases with increasing fluid temperature. Also, a review of previous studies showed that existing papers had not investigated hybrid pin-fin patterns by considering the effect of changing distribution percentages on overall performance, which is the aim of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 September 2023

Mohammad Abbaszadeh, Mohammad Hossein Montazeri and Mojtaba Mirzaie

The purpose of the study is to propose a novel implementation of twisted tape in sinusoidal wavy-walled tubes to enhance the rate of heat transfer without compromising thermal…

Abstract

Purpose

The purpose of the study is to propose a novel implementation of twisted tape in sinusoidal wavy-walled tubes to enhance the rate of heat transfer without compromising thermal efficiency. The study numerically investigates the fluid flow characteristics and analyzes the effect of different geometrical configurations, including wall wave amplitude, tape twist angles and nanoparticle volume fractions, on heat transfer improvement and performance factor.

Design/methodology/approach

This problem is numerically investigated using computational fluid dynamics, and the method is the finite volume method. A two-phase mixture model is used for nanofluid modeling.

Findings

The study investigated the effect of wall waviness, twisted tape, and nanoparticles on forced convective heat transfer and friction factor behavior in laminar pipe flow in three different Reynolds number regimes. The results showed that implementing twisted tape in wavy tubes significantly increased the rate of heat transfer and the performance factor, with the best twist ratio between 90 and 180°. Adding nanoparticles also enhanced heat transfer and performance factor, but to a lesser extent than wavy wall-twisted tape combinations. The study suggests selecting a proper combination of wavy wall and twisted tape at each Reynolds number to achieve an optimum solution.

Originality/value

To the best of the authors’ knowledge, the implementation of the selected passive methods in sinusoidal wavy tubes has not been studied before, and no previous studies have taken into account such a mix of heat transfer improvement techniques.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 April 2023

Sadiya Naaz, Mangey Ram and Akshay Kumar

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Abstract

Purpose

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Design/methodology/approach

Although, a variety of methodologies have been used to assess the refrigeration system's reliability function that has proven to be effective, the universal generating function approach is the basis of this research study, which is used in the calculation of a domestic refrigeration system with four separate components that are related in series and parallel with a corresponding sample to form a complex machine.

Findings

In this paper, signature reliability of the refrigeration system has been evaluated with the universal generating function technique. There are four components present in the proposed system in complex (series and parallel) manner. The tail signature, signature, Barlow–Proschan index, expected lifetime and expected cost of independent identically distributed are all computed.

Originality/value

This is the first study of domestic refrigeration system to examine the signature reliability with the help of universal generating function techniques with various measures. Refrigeration systems are an essential process in industries and home applications as they perform cooling or the maintain temperature at the desired value. A cycle of refrigeration consists of four main components such as, heat exchange, compression and expansion with a refrigerant flowing through the units within the cycle.

Article
Publication date: 27 September 2023

Md Atiqur Rahman

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated…

26

Abstract

Purpose

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated circular baffle plates complemented by rectangular air deflectors operating at different inclination angles. The tubes were arranged in a consistent layout parallel to the longitudinal airflow. The deflector’s heightened air-side turbulence initiates the frenzied motion, escalating the surface heat transfer rate.

Design/methodology/approach

The tubes maintained a constant heat flux condition over the surface. In each baffle plate, eight deflectors with identical inclination angles were devised in a reverse position, forming a rotation of air inside a circular duct that held tubes (carrying hot water) which elevated air-side turbulence, thereby enhancing the rate of heat transference on the surface. The baffle plates were equally situated from each other at changing pitch ratios. The Reynolds quantity was preserved in the scope of 16,000–30,000. The performance of the heat exchanger considering pitch ratios and inclination angles was examined.

Findings

The research indicates that when examined under similar conditions, an exchanger with a deflector baffle plate shows a strong dependence on the pitch ratio and inclination angle with a mean rise of 0.19 times in thermal enhancement factor at an inclination angle of 30° and a pitch ratio of 1.2 contrasted with an exchanger with segmental baffle plates.

Originality/value

The result shows the dependence of pitch ratio, Reynolds number and inclination on the heat transfer and friction factor rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 17