Search results

1 – 10 of 31
Article
Publication date: 29 November 2018

Akshay Kumar and S.B. Singh

The purpose of this paper is to deal with a linear multi-state sliding window coherent system which generalizes the consecutive k-out-of-r-from-n:F system in the multi-state case…

Abstract

Purpose

The purpose of this paper is to deal with a linear multi-state sliding window coherent system which generalizes the consecutive k-out-of-r-from-n:F system in the multi-state case. The system has n linearly ordered multi-state elements consisting of m parallel independent and identically distributed elements. Every element of the system can have two states: completely working or totally failed. The system fails if the sum of performance rate is lower than the given weight.

Design/methodology/approach

The authors proposed to compute the signature, MTTF and BarlowProschan index with the help of UGF technique of multi-state SWS which consists of m parallel i.i.d. components in each multi-state window.

Findings

In the present study, the authors have evaluated the signature reliability, expected lifetime, cost analysis and BarlowProschan index.

Originality/value

In this study, the authors have studied a linear multi-state sliding window system which consists of n ordered multi-state element, and each multi-state element also consists of m parallel windows. The focus of the present paper is to evaluate reliability metrices of the considered system with the help of signature from using the universal generating function.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 11 October 2021

Mangey Ram, Subhi Tyagi, Akshay Kumar and Nupur Goyal

The purpose of this paper is to design a ring network topology system and alter it into a series–parallel type framework. Then, reliability of the framework is analysed and…

Abstract

Purpose

The purpose of this paper is to design a ring network topology system and alter it into a series–parallel type framework. Then, reliability of the framework is analysed and authors also discussed the signature to analyse the most sensitive component.

Design/methodology/approach

This study presents a ring-shaped network system where this type of topology forms a single continuous pathway for signals through every node. In this study, a system consists of ring network topology is generalized in the series–parallel mixed configuration and reliability characteristics are evaluated with the assistance of universal generating function (UGF) technique. The system consists of wires, repeaters, components or computers and power supply. The wires and repeaters are in series, so, if they fail the whole system will fail and the signals will not go further. The components or computers are connected to each other in parallel configuration. So, the whole system will not fail until the last computer is working. There is also a two-unit power supply system which has one unit in a standby mode. On the failure of first power supply, the second one will start functioning and the whole system fails on the failure of both power supply.

Findings

By the assistance of UGF technique, reliability function of the framework is evaluated. Also, BarlowProschan index and expected lifetime for the designed system is estimated by considering a numerical example for the general ring-shaped network system.

Originality/value

UGF technique is very effective for estimating the reliability of a system with complex structure and having two performance rates, i.e. completely failed and perfectly working, or more than two, i.e. multi-state performance. This technique enables to estimate every components contribution in the working and failure of the whole system. A general model of ring-shaped network system is taken and generalized algorithm is drawn for the system. Then a particular numerical example is solved for illustrating the use of this technique.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 April 2023

Sadiya Naaz, Mangey Ram and Akshay Kumar

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Abstract

Purpose

The purpose of this paper is to evaluate the reliability and structure function of refrigeration complex system consisted of four components in complex manner.

Design/methodology/approach

Although, a variety of methodologies have been used to assess the refrigeration system's reliability function that has proven to be effective, the universal generating function approach is the basis of this research study, which is used in the calculation of a domestic refrigeration system with four separate components that are related in series and parallel with a corresponding sample to form a complex machine.

Findings

In this paper, signature reliability of the refrigeration system has been evaluated with the universal generating function technique. There are four components present in the proposed system in complex (series and parallel) manner. The tail signature, signature, BarlowProschan index, expected lifetime and expected cost of independent identically distributed are all computed.

Originality/value

This is the first study of domestic refrigeration system to examine the signature reliability with the help of universal generating function techniques with various measures. Refrigeration systems are an essential process in industries and home applications as they perform cooling or the maintain temperature at the desired value. A cycle of refrigeration consists of four main components such as, heat exchange, compression and expansion with a refrigerant flowing through the units within the cycle.

Article
Publication date: 5 June 2017

Akshay Kumar and S.B. Singh

The purpose of this paper is to compute the signature reliability of the coherent systems.

Abstract

Purpose

The purpose of this paper is to compute the signature reliability of the coherent systems.

Design/methodology/approach

The considered k-out-of-n coherent system consists of n number of elements connected in series. With the help of these systems, the authors have evaluated a mathematical structure using universal generating function.

Findings

Using the universal generating function technique, the authors evaluate tail signature, Barlow-Proschan index, expected lifetime and expected cost.

Originality/value

In this paper, the authors have developed a coherent systems based on the universal generating function technique.

Details

International Journal of Quality & Reliability Management, vol. 34 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 31 March 2023

Mangey Ram, Akshay Kumar and Sadiya Naaz

The purpose of this paper is to evaluate the reliability and signature reliability of solar panel k-out-of-n-multiplex system with the help of universal generating function.

Abstract

Purpose

The purpose of this paper is to evaluate the reliability and signature reliability of solar panel k-out-of-n-multiplex system with the help of universal generating function.

Design/methodology/approach

Energy scarcity and global warming issues have become important concerns for humanity in recent decades. To solve these problems, various nations work for renewable energy sources (RESs), including sun, breeze, geothermal, wave, radioactive and biofuels. Solar energy is absorbed by solar panels, referred to as photovoltaic panels, which then transform it into electricity that can be used to power buildings or residences. Remote places can be supplied with electricity using these panels. Solar energy is often generated using a solar panel that is connected to an inverter for power supply. As a result, a converter reliability evaluation is frequently required. This paper presents a study on the reliability analysis of k-out-of-n systems with heterogeneous components. In this research, the universal generating function methodology is used to identify the reliability function and signature reliability of the solar array components. This method is commonly used to assess the tail signature and Barlow-Proschan index with independent and identically distributed components.

Findings

The Barlow-Proschan index, tail signature, signature, expected lifetime, expected cost and minimal signature of independent identically distributed are all computed.

Originality/value

This is the first study of solar panel k-out-of-n-multiplex systems to examine the signature reliability with the help of universal generating function techniques with various measures.

Article
Publication date: 6 February 2019

Soni Bisht and S.B. Singh

The purpose of this paper is to evaluate various reliability measures like reliability, expected lifetime (mean time to failure), signature reliability and compare networks based…

Abstract

Purpose

The purpose of this paper is to evaluate various reliability measures like reliability, expected lifetime (mean time to failure), signature reliability and compare networks based on the different flows.

Design/methodology/approach

The reliability characteristics of complex bridge networks have been evaluated using different algorithms with the help of universal generating function (UGF). Further, the signature reliability of the considered networks has been determined using Owen’s method.

Findings

The present paper proposes an efficient algorithm to compute the reliability indices of complex bridge networks having i.i.d. lifetime components (nodes, edges) with the help of UGF and Owen’s method. This study reveals that a slight change in the complex bridge network affects the reliability significantly. Finally, by the reliability structure function, proposed algorithms are used to find the signature and MTTF. From signature, we have determined the different failure probabilities corresponding to edges of the network.

Originality/value

In this work, we have evaluated reliability characteristics and signature reliability of the complex bridge networks using UGF method and Owen’s method respectively unlike done in the past.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 August 2019

Liling Ge and Yingjie Zhang

The purpose of this paper is to identify the critical components of a complex system by using survival signature. First, a complex system is abstracted with varying scales and…

Abstract

Purpose

The purpose of this paper is to identify the critical components of a complex system by using survival signature. First, a complex system is abstracted with varying scales and generates a multi-levels model. Then reliability evaluations can be conducted by survival signature from rough to fine for tracing and identifying them. Finally, the feasibility of the proposed approach is demonstrated by an actual production system.

Design/methodology/approach

The paper mainly applies a multi-level evaluating strategy for the reliability analysis of complex systems with components of multiple types. In addition, a multi-levels model of a complex system is constructed and survival signature also used for evaluation.

Findings

The proposed approach was demonstrated to be the feasibility by an actual production system that is used in the case study.

Research limitations/implications

The case study was performed on a system with simple network structure, but the proposed approach could be applied to systems with complex ones. However, the approach to generate the digraphs of abstraction levels for complex system has to be developed.

Practical implications

So far the approach has been used for the reliability analysis of a machining system. The approach that is proposed for the identification of critical components also can be applied to make maintenance decision.

Originality/value

The multi-level evaluating strategy that was proposed for reliability analysis and the identification of critical components of complex systems was a novel method, and it also can be applied as index to make maintenance planning.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2002

Flavio Allella, Elio Chiodo and Mario Pagano

An optimal maintenance program for electrical power system components should be based on their reliability. Since, for components characterized by high reliability and cost such…

Abstract

An optimal maintenance program for electrical power system components should be based on their reliability. Since, for components characterized by high reliability and cost such as HV circuit breakers, available statistical data are in limited number, a physical model for their ageing is opportune. In the paper a Predictive Maintenance Program (PMP), for determining when a HV circuit‐breaker should be rebuilt, is formalized; it is based upon an adequate stochastic model of electrical wear associated with breaking operations due to system faults. In the model, both fault times and amplitudes are described by means of random variables, in order to deduce a reliability function used as input data for a Bayesian discriminant analysis which dynamically estimates, also in the presence of observation errors, the state of the component, determining the optimal times to perform a maintenance action.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2004

E. Chiodo, F. Gagliardi and M. Pagano

The aim of this paper is to show the connections among uncertainty, information and human knowledge to develop methodologies able to support actions for measure and control of…

Abstract

The aim of this paper is to show the connections among uncertainty, information and human knowledge to develop methodologies able to support actions for measure and control of complex processes, and to propose new model to represent human hazard rate. The interest to human reliability analyses (HRA) arose for nuclear applications, observing that 50‐70 per cent of reported failures on operating systems were human‐induced. Since the middle of 1980, methods and tools of HRA have been transferred former to military weapons systems, latter to aviation designs and operations. At present, HRA, which consider human performance and human reliability knowledge, must be an integral element of complex system design and development. In this paper, system reliability function is carried out as a function of technological, information and human components, evidencing how human element affects the whole system reliability. On the basis of consideration that human errors are often the most unexpected and then the least protected, and subject to many random factors, an analytical model is proposed, based on a conditional Weibull hazard rate with a random scale parameter, for whose characterization the log‐normal, gamma and the inverse Gaussian distributions are considered. The aim of this model is to take into account random variability of human performances by introducing a random hazard rate.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 June 2017

Elena Zaitseva and Vitaly Levashenko

The purpose of this paper is to develop a new mathematical method for the reliability analysis and evaluation of multi-state system (MSS) reliability that agrees with specifics of…

Abstract

Purpose

The purpose of this paper is to develop a new mathematical method for the reliability analysis and evaluation of multi-state system (MSS) reliability that agrees with specifics of such system. It is possible based on the application of multiple-valued logic (MVL) that is a natural extension of Boolean algebra used in reliability analysis.

Design/methodology/approach

Similar to Boolean algebra, MVL is used for the constriction of the structure function of the investigated system. The interpretation of the structure function of the MSS in terms of MVL allows using mathematical methods and approaches of this logic for the analysis of the structure function.

Findings

The logical differential calculus is one of mathematical approaches in MVL. The authors develop new method for MSS reliability analysis based on logical differential calculus, in particular direct partial logical derivatives, for the investigation of critical system states (CSSs). The proposed method allows providing the qualitative and quantitative analyses of MSS: the CSS can be defined for all possible changes of any system component or group of components, and probabilities of this state can also be calculated.

Originality/value

The proposed method permits representing the MSS in the form of a structure function that is interpreted as MVL function and provides the system analyses without special transformation into Boolean interpretation and with acceptable computational complexity.

Details

International Journal of Quality & Reliability Management, vol. 34 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 31