Search results

1 – 10 of over 1000
Article
Publication date: 21 March 2022

Jason Martinez and Ann Jeffers

A methodology for producing an elevated-temperature tension stiffening model is presented.

Abstract

Purpose

A methodology for producing an elevated-temperature tension stiffening model is presented.

Design/methodology/approach

The energy-based stress–strain model of plain concrete developed by Bažant and Oh (1983) was extended to the elevated-temperature domain by developing an analytical formulation for the temperature-dependence of the fracture energy Gf. Then, an elevated-temperature tension stiffening model was developed based on the modification of the proposed elevated-temperature tension softening model.

Findings

The proposed tension stiffening model can be used to predict the response of composite floor slabs exposed to fire with great accuracy, provided that the global parameters TS and Kres are adequately calibrated against global structural response data.

Originality/value

In a finite element analysis of reinforced concrete, a tension stiffening model is required as input for concrete to account for actions such as bond slip and tension stiffening. However, an elevated-temperature tension stiffening model does not exist in the research literature. An approach for developing an elevated-temperature tension stiffening model is presented.

Article
Publication date: 1 April 1989

René de Borst and Jan G. Rots

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are…

Abstract

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are not always suppressed by surrounding elements. This is exemplified for a double‐notched concrete beam and for a Crack‐Line‐Wedge‐Loaded Double‐Cantilever‐Beam (CLWL—DCB). The latter example has been analysed for a large variety of finite elements and integration schemes. To investigate the phenomenon in greater depth an eigenvalue analysis has been carried out for some commonly used finite elements.

Details

Engineering Computations, vol. 6 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 11 October 2011

Mirela Galic, Pavao Marovic and Zeljana Nikolic

The main aim of this paper is to present a three‐dimensional numerical material model for concrete which combines plasticity with a classical orthotropic smeared crack…

1162

Abstract

Purpose

The main aim of this paper is to present a three‐dimensional numerical material model for concrete which combines plasticity with a classical orthotropic smeared crack formulation. A further aim is to raise a discussion leading to the creation of a comprehensive computer programme for the analyses of reinforced and prestressed concrete structures.

Design/methodology/approach

A new numerical material model for concrete is developed and main theoretical explanations are given to aid in understanding the algorithm. The model is based on Mohr‐Coulomb criterion for dominant compression and Rankine criterion for dominant tension influences. A multi‐surface presentation of the model is implemented which permits the rapid convergence of the mathematical procedure. The model includes associated and non‐associated flow rules, strain hardening and softening where the development of the plastic strain was described by the function of cohesion.

Findings

Provides information about developing a new numerical material model for concrete.

Practical implications

The model is implemented into the computer programme PRECON3D for the three‐dimensional nonlinear analysis of the reinforced and prestressed concrete structures.

Originality/value

In this model, the very complex behaviour of concrete is defined by elementary material parameters which can be obtained by a standard uniaxial test. The presented model enables a very detailed and precise analysis of reinforced and prestressed concrete structures until crushing with a high accuracy, so that the expensive experimental tests can be reduced. The paper could be very valuable to researchers in this field as a benchmark for their analyses.

Details

Engineering Computations, vol. 28 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2006

J. Pina‐Henriques and Paulo B. Lourenço

To contribute for a reliable estimation of the compressive strength of unreinforced masonry from the properties of the constituents (units and mortar).

1831

Abstract

Purpose

To contribute for a reliable estimation of the compressive strength of unreinforced masonry from the properties of the constituents (units and mortar).

Design/methodology/approach

Sophisticated non‐linear continuum models, based on damage, plasticity, cracking or other formulation, are today standard in several finite element programs. The adequacy of such models to provide reliable estimates of masonry compressive strength, from the properties of the constituents, remains unresolved. The authors have shown recently that continuum models might significantly overestimate the prediction of the compressive strength. Hence, an alternative phenomenological approach developed in a discrete framework is proposed, based on attributing to masonry components a fictitious micro‐structure composed of linear elastic particles separated by non‐linear interface elements. The model is discussed in detail and a comparison with experimental results and numerical results using a standard continuum model is provided.

Findings

Clear advantages in terms of compressive strength and peak strain prediction were found using the particle model when compared with standard continuum models. Moreover, compressive and tensile strength values provided by the model were found to be particle size‐ and particle distortion‐independent for practical purposes. It is also noted that size‐dependent responses were obtained and that shear parameters rather than tensile parameters were found to play a major role at the meso‐level of the phenomenological model.

Originality/value

This paper provides further insight into the compressive behaviour of quasi‐brittle materials, with an emphasis on the strength prediction of masonry composites. Reliable prediction of masonry strength is of great use in the civil engineering field, allowing one to reduce experimental testing in expensive wallets and to avoid the usage of conservative empirical formulae.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Expert briefing
Publication date: 13 February 2015

Syria's beleaguered mainstream rebel movement suffered numerous territorial losses in 2014 at the hands of Islamic State group (ISG) and the regime. Partly in response to these…

Article
Publication date: 1 August 2000

Pankaj and Khalid Moin

Plane strain constitutive behaviour of von Mises and isotropic Hoffman materials is examined using single element tests. Two kinds of tests are conducted – (a) prescribed…

Abstract

Plane strain constitutive behaviour of von Mises and isotropic Hoffman materials is examined using single element tests. Two kinds of tests are conducted – (a) prescribed displacement tests; and (b) tests with a mixture of displacements and boundary tractions prescribed. While (a) are used to understand the manner of stress traversal on the yield surface in principal stress space, (b) are employed to study the load displacement response and the possibility of ensuing localization. Associated plasticity is assumed throughout. The tests are conducted using perfect and strain softening plasticity. It is found that for the von Mises criterion limited exact solutions can be evolved even under softening (or hardening) conditions. For isotropic Hoffman materials the nature of the stress traversal, load deflection response and the satisfaction of the localization conditions are strongly influenced by the ratio and difference of uniaxial yield strengths, in tension and compression, as well as by the softening parameters.

Details

Engineering Computations, vol. 17 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1988

Gilles Pijaudier‐Cabot, Zdeněk P. Bažant and Mazen Tabbara

This paper presents a comparison of various models for strain‐softening due to damage such as cracking or void growth, as proposed recently in the literature. Continuum‐based…

Abstract

This paper presents a comparison of various models for strain‐softening due to damage such as cracking or void growth, as proposed recently in the literature. Continuum‐based models expressed in terms of softening stress—strain relations, and fracture‐type models expressed in terms of softening stress—displacement relations are distinguished. From one‐dimensional wave propagation calculations, it is shown that strain‐localization into regions of finite size cannot be achieved. The previously well‐documented spurious convergence is obtained with continuum models, while stress—displacement relations cannot model well smeared‐crack situations. Continuum models may, however, be used in general if a localization limiter is implemented. Gradient‐type localization limiters appear to be rather complicated; they require solving higher‐order differential equations of equilibrium with additional bourdary conditions. Non‐local localization limiters, especially the non‐local continuum with local strain, in which only the energy dissipating variables are non‐local, is found to be very effective, and also seems to be physically realistic. This formulation can correctly model the transition between homogeneous damage states and situations in which damage localizes into small regions that can be viewed as cracks. The size effect observed in the experimental and numerical response of specimens in tension or compression is shown to be a consequence of this progressive transition from continuum‐type to fracture‐type formulations.

Details

Engineering Computations, vol. 5 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 24 February 2012

Smitha Gopinath, Nagesh Iyer, J. Rajasankar and Sandra D'Souza

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell…

Abstract

Purpose

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell structures, with specific reference to account for the nonlinear behaviour of cracked concrete and the other associated features.

Design/methodology/approach

Geometric representation of the shell is enabled through multiple concrete layers. Composite characteristic of concrete is accounted by assigning different material properties to the layers. Steel reinforcement is smeared into selected concrete layers according to its position in the RC shell. The integrated model concurrently accounts for nonlinear effects due to tensile cracking, bond slip and nonlinear stress‐strain relation of concrete in compression. Smeared crack model having crack rotation capability is used to include the influence of tensile cracking of concrete. Propagation and change in direction of crack along thickness of shell with increase in load and deformation are traced using the layered geometry model. Relative movement between reinforcing steel and adjacent concrete is modelled using a compatible bond‐slip model validated earlier by the authors. Nonlinear iterative solution technique with imposed displacement in incremental form is adopted so that structures with local instabilities or strain softening can also be analysed.

Findings

Proposed methodologies are validated by evaluating ultimate strength of two RC shell structures. Nonlinear response of McNeice slab is found to compare well with that of experiment available in literature. Then, a RC cooling tower is analysed for factored wind loads to study its behaviour near ultimate load. Numerical validation demonstrates efficacy and usefullness of the proposed methodologies for nonlinear FEA of RC shell structures.

Originality/value

The present paper integrates critical methodologies used for behaviour modelling of concrete and reinforcement with the physical interaction among them. The study is unique by considering interaction of tensile cracking and bond‐slip which are the main contributors to nonlinearity in the nonlinear response of RC shell structures. Further, industrial application of the proposed modelling strategy is demonstrated by analysing a RC cooling tower shell for its nonlinear response. It is observed that the proposed methodologies in the integrated manner are unique and provide stability in nonlinear analysis of RC shell structures.

Article
Publication date: 24 October 2023

Quan-Pu Liu, Jia Kang, Long-Xu Tan, Si-Yu Wang, Otto Bruhns and Heng Xiao

This paper aims to present a direct analysis to demonstrate why markedly different tensile and compressive behaviors of concretes could not be simulated with the Drucker–Prager…

Abstract

Purpose

This paper aims to present a direct analysis to demonstrate why markedly different tensile and compressive behaviors of concretes could not be simulated with the Drucker–Prager yield criterion.

Design/methodology/approach

This study proposed an extended form of the latter for establishing a new elastoplasticity model with evolving yield strengths.

Findings

Explicit closed-form solutions to non-symmetric tensile and compressive responses of uniaxial specimens at finite strain are for the first time obtained from hardening to softening.

Originality/value

With such exact solutions, the yield strengths in tension and compression can be explicitly prescribed by uniaxial tensile and compressive stress-strain functions. Then, the latter two are further provided in explicit forms toward accurately simulating tensile and compressive behaviors. Numerical examples are supplied for meso-scale heterogeneous concrete (MSHC) and high-performance concrete (HPC), etc. Model predictions are in good agreement with test data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 January 2009

D. Brancherie and A. Ibrahimbegovic

The purpose of this paper is to present a finite element model capable of describing both the diffuse damage mechanism which develops first during the loading of massive brittle…

Abstract

Purpose

The purpose of this paper is to present a finite element model capable of describing both the diffuse damage mechanism which develops first during the loading of massive brittle structures and the failure process, essentially due to the propagation of a macro‐crack responsible for the softening behaviour of the structure. The theoretical developments for such a model are presented, considering an isotropic damage model for the continuum and a Coulomb‐type criterion for the localized part.

Design/methodology/approach

This is achieved by activating subsequently diffuse and localized damage mechanisms. Localized phenomena are taken into account by means of the introduction of a displacement discontinuity at the element level.

Findings

It was found that, with such an approach, the final crack direction is predicted quite well, in fact much better than the prediction made by the fracture mechanics type of models considering combination of only elastic response and softening.

Originality/value

The presented model has the potential to describe complex damage phenomena in a cyclic and/or non‐proportional loading program, such as crack closing and re‐opening, cohesive resistance deterioration due to tangential sliding, by using only a few parameters compared to the traditional models for cyclic loading.

Details

Engineering Computations, vol. 26 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000