Search results

1 – 10 of 695
Article
Publication date: 1 March 2001

John H. Lau

The solder‐joint reliability of solder‐bumped wafer level chip scale package (WLCSP) on microvia build‐up printed circuit board (PCB) subjected to thermal cycling conditions is…

Abstract

The solder‐joint reliability of solder‐bumped wafer level chip scale package (WLCSP) on microvia build‐up printed circuit board (PCB) subjected to thermal cycling conditions is investigated in this study. The 62Sn36Pb2Ag solder joints are assumed to be: an elastic material; an elastic‐plastic material; and a creep material which obey the Garofalo‐Arrhenius steady‐state creep constitutive law. The stress and strain in the corner solder joint of the WLCSP assembly are presented and compared for these three material models. Also, the results presented herein will be compared with that from creep analysis of the WLCSP on PCB without microvia build‐up layer.

Details

Circuit World, vol. 27 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 1990

D.E. Riemer

A method for the prediction of solder joint cycle life in surface‐mount assemblies is presented, based on the conversion of plastic solder shear strain into cycle life by means of…

Abstract

A method for the prediction of solder joint cycle life in surface‐mount assemblies is presented, based on the conversion of plastic solder shear strain into cycle life by means of an equation derived by Engelmaier. The paper introduces a different analytical procedure for the determination of solder joint shear strain. Shear strain is normally calculated from temperature and TCE differentials between package and interconnect board without consideration of elastic deformations. The suggested method derives average plastic shear strain of the solder joint at maximum temperature excursion from finite‐element analysis of a simple model consisting of an interconnect board, a solder joint and a package. All materials in the model have linear (elastic) properties, except solder which has non‐linear (elastic/plastic) characteristics. The solder stress/strain curve is described to the finite‐element programme with temperature‐dependent bilinear approximations. The solder joint is modelled as a single finite element so that only one value is computed for the plastic shear strain in the solder joint. This value represents the average shear strain which is converted into solder joint cycle life. The cycle life predictions with the finite‐element method are confirmed by cycling results obtained on actual hardware. The described method can serve as a design tool in the optimisation of surface‐mount assemblies. The procedure can help to define accelerated temperature cycling conditions.

Details

Soldering & Surface Mount Technology, vol. 2 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 February 2006

Marinella Giunta and Aurora Angela Pisano

This paper proposes a new visco‐elastoplastic constitutive model for asphalt concretes able to reproduce the non linear time‐dependent behaviour of such materials.The constitutive…

Abstract

This paper proposes a new visco‐elastoplastic constitutive model for asphalt concretes able to reproduce the non linear time‐dependent behaviour of such materials.The constitutive model has been developed with the aim of making it fit specific experimental features previously observed. Moreover the proposed formulation will be demonstrated to be fully consistent with general thermodynamic requirements. Apart from a rigorous analytical formulation; a corresponding rheological sketch of the model is also given. From this representation, it can be shown that the model is essentially a combination of a generalized Maxwell model and a hardening visco‐plastic element.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2017

Kankan Ji, Xingquan Zhang, Shubao Yang, Liping Shi, Shiyi Wang and Yuguo Wu

The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel…

Abstract

Purpose

The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel, respectively. Surface integrity, including surface roughness, sub-surface hardness, residual stresses and surface morphology, was investigated in detail, and the surface quality of samples ground by two grinding wheels was compared.

Design/methodology/approach

In the present work, surface integrity of quenched steel 1045 machined by the CBN grinding wheel and the SiC wheel was investigated systematically. All the specimens were machined with a single pass in the down-cutting mode of dry condition. Surface morphology of the ground specimen was observed by using OLYMPUS BX51M optical microscopy. Surface roughness of seven points was measured by using a surface roughness tester at a cut-off length of 1.8 mm and the measurement traces were perpendicular to the grinding direction. Sub-surface micro-hardness was measured by using HVS-1000 digital micro-hardness tester after the cross-section surface was polished. The residual stress was tested by using X-350A X-ray stress analyzer.

Findings

When the cut depth is increased from 0.01 to 0.07 mm, the steel surface machined by the CBN wheel remains clear grinding mark, lower roughness, higher micro-hardness and higher magnitude of compressive stress and fine microstructure, while the surface machined by the SiC grinding wheel becomes worse with increasing of cut depth. The value of micro-hardness decreases, and the surface roughness increases, and the surface compressive stress turns into tensile stress. Some micro-cracks and voids occur when the sample is processed by the SiC grinding wheel with cut depth 0.07 mm.

Originality/value

In this paper, the specimens of quenched steel 1045 were machined by the CBN grinding wheel and the SiC wheel with various cutting depths. The processing quality resulted from the CBN grinding wheel is better than that resulted from the SiC grinding wheel.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 January 1987

T.K. Hellen and W.S. Blackburn

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are…

Abstract

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are reviewed, classified broadly into two groups, as domain integrals and virtual crack extension techniques. In addition to considerations of how such quantities may be calculated by finite elements, assessment methods of conducting the actual incremental analyses are described.

Details

Engineering Computations, vol. 4 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 12 February 2018

Victor Rizov

This paper aims to analyze the elastic-plastic delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration.

Abstract

Purpose

This paper aims to analyze the elastic-plastic delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration.

Design/methodology/approach

The mechanical response of beam is described by a power-law stress-strain relation. The fracture is studied analytically in terms of the strain energy release rate by considering the beam complimentary strain energy. The beam can have an arbitrary number of layers. Besides, each layer may have different thickness and material properties. Also, in each layer, the material is functionally graded along the beam width. A delamination crack is located arbitrary between layers. Thus, the crack arms have different thickness.

Findings

The analysis developed is used to elucidate the effects of crack location, material gradient and non-linear behaviour of material on the delamination fracture. It is found that the material non-linearity leads to increase in the strain energy release rate. Therefore, the non-linear behaviour of material should be taken into account in fracture mechanics-based safety design of structural members and components made of multilayered functionally graded materials. The analysis revealed that the strain energy release rate can be effectively regulated by using appropriate material gradients in the design stage of multilayered functionally graded constructions.

Originality/value

Delamination fracture behaviour of multilayered functionally graded four-point bending beam configuration is studied in terms of the strain energy release rate by taking into account the material non-linearity.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1988

G.P. Mitchell and D.R.J. Owen

Recent publications have highlighted the effectiveness of using a consistent tangent modulus when solving elastic‐plastic problems. The formulation of a consistent tangent modulus…

Abstract

Recent publications have highlighted the effectiveness of using a consistent tangent modulus when solving elastic‐plastic problems. The formulation of a consistent tangent modulus is closely related to the scheme used to integrate the constitutive equations. Recent work has shown how many of these schemes currently in use can be derived from certain broad classes of algorithms. In this paper these procedures are examined for a number of commonly used yield/failure criteria. For certain cases a remarkably simple formulation results which can lead to considerable savings in computational time.

Details

Engineering Computations, vol. 5 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 2 October 2017

Victor Rizov

The purpose of this paper is to perform a theoretical analysis of delamination fracture behaviour of the Crack Lap Shear layered beam configuration taking into account the material

Abstract

Purpose

The purpose of this paper is to perform a theoretical analysis of delamination fracture behaviour of the Crack Lap Shear layered beam configuration taking into account the material non-linearity. A delamination crack located arbitrarily along the beam height was considered in this study.

Design/methodology/approach

The beam mechanical behaviour was described by using the Ramberg-Osgood stress-strain relation. Fracture was analysed by applying the J-integral approach. Besides by using symmetric Ramberg-Osgood stress-strain curve, fracture was investigated also by Ramberg-Osgood stress-strain curve that is not symmetric with respect to tension and compression. The J-integral solutions were verified by performing elastic-plastic analyses of the strain energy release rate.

Findings

The effects of crack location and material properties on the non-linear fracture behaviour were evaluated. It was found that the material non-linearity leads to increase of the J-integral values. Therefore, the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members composed by layered materials. The analytical solutions derived are very useful for parametric investigations of delamination fracture with considering the material non-linearity. The results obtained can be applied for optimisation of the beam structure with respect to fracture performance.

Originality/value

The present study contributes for the understanding of delamination fracture in layered beams that exhibit non-linear material behaviour.

Details

International Journal of Structural Integrity, vol. 8 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2018

S.A. Krishnan, G. Sasikala, A. Moitra, S.K. Albert and A.K. Bhaduri

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening…

Abstract

Purpose

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening steel like AISI type 316L(N) stainless steel.

Design/methodology/approach

Ductile damage parameter and far field J-integral have been obtained from standard FEM analysis for a crack/notch tip undergoing large plastic deformation and resulting in crack initiation/growth. In conjunction with experimental results, the damage variable for low strength and high hardening material has been derived in terms of continuum parameters: equivalent plastic strain (εeq) and stress triaxiality (φ). The material parameters for damage initiation and growth in 316LN SS have been evaluated from tensile and fracture tests. With these material tensile/fracture parameters as input, elastic-plastic eXtended Finite Element Method (X-FEM) simulations were carried out on compact tension (CT) specimen geometry under varying initial stress triaxiality conditions.

Findings

The material parameters for damage initiation and growth have been assessed and calibrated by comparing the X-FEM predicted load-displacement responses with the experimental results. It is observed that the deviations in the predicted load values from the experimental data are within 6 percent for specimens with a/W=0.39, 0.55, 0.64, while for a/W=0.72, it is 17 percent.

Originality/value

The present study is a part of developing methods to obtain calibrated material damage parameters for crack growth simulation of components made of AISI 316L(N) stainless steel. This steel is used for fast breeder reactor-based power plant being built at Kalpakkam, India.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 695