Search results

1 – 10 of 50
Article
Publication date: 21 March 2022

Jason Martinez and Ann Jeffers

A methodology for producing an elevated-temperature tension stiffening model is presented.

Abstract

Purpose

A methodology for producing an elevated-temperature tension stiffening model is presented.

Design/methodology/approach

The energy-based stress–strain model of plain concrete developed by Bažant and Oh (1983) was extended to the elevated-temperature domain by developing an analytical formulation for the temperature-dependence of the fracture energy Gf. Then, an elevated-temperature tension stiffening model was developed based on the modification of the proposed elevated-temperature tension softening model.

Findings

The proposed tension stiffening model can be used to predict the response of composite floor slabs exposed to fire with great accuracy, provided that the global parameters TS and Kres are adequately calibrated against global structural response data.

Originality/value

In a finite element analysis of reinforced concrete, a tension stiffening model is required as input for concrete to account for actions such as bond slip and tension stiffening. However, an elevated-temperature tension stiffening model does not exist in the research literature. An approach for developing an elevated-temperature tension stiffening model is presented.

Article
Publication date: 7 October 2021

Lisa Choe, Selvarajah Ramesh, Xu Dai, Matthew Hoehler and Matthew Bundy

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building…

Abstract

Purpose

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.

Design/methodology/approach

The fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.

Findings

Although the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.

Originality/value

This work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Book part
Publication date: 21 November 2018

Jun Xiu Low, Poi Ngian Shek and Mahmood Md Tahir

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite

Abstract

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite slabs system relies on the bonding action between the concrete and the steel deck, the shear connections and the cross-sectional resistance of steel beam. However, structural behaviour of composite slab is a complex phenomenon and therefore experimental study is often conducted to establish the actual strength of the structure under ultimate load capacity. The main objective of this study is to determine the structural behaviour of composite slab system until ultimate limit state. Total of two specimens are examined in order to obtain failure mechanism of the composite structure under full load capacity. A new design approach of composite slab for roofing system are proposed in this study to construct a composite slab system that can float in the water but not wash away by flood. The lightweight materials in this composite construction are cold-formed steel and foam concrete. The system focuses on the concept of Industrialised building system (IBS) to reduce the cost and construction time.

Details

Improving Flood Management, Prediction and Monitoring
Type: Book
ISBN: 978-1-78756-552-4

Keywords

Article
Publication date: 27 July 2017

Simon Mwangi

This paper aims to present the findings of a numerical investigation into the performance of the steel-concrete composite floor involved in Broadgate Phase 8 fire.

Abstract

Purpose

This paper aims to present the findings of a numerical investigation into the performance of the steel-concrete composite floor involved in Broadgate Phase 8 fire.

Design/methodology/approach

The investigation is conducted by carrying out a 3-D thermomechanical analysis of a composite floor similar to the one involved in the fire using ANSYS. Four fire scenarios are investigated, with each producing a unique stress – strain pattern. The results obtained are compared with the observations made after the fire and inferences drawn.

Findings

The results obtained are found to be correlated with the observations made after the fire. The performance of the composite floor is found to be dominated by development of large strains, leading to large deflections. Furthermore, colder parts of the structure, through redistribution of forces, are found to have a profound impact on the ability of a composite floor to resist heating effects. From the findings, it is concluded that connections’ design, occurrence of membrane action and thermal restraints were the key reasons the floor did not fail.

Originality value

The study takes a more forensic approach. This is a departure from majority of published literature, where comparison is usually between experimental and numerical results. By comparing the findings from a real fire with those of a numerical investigation, the study provides an insight into the accuracy of applying numerical models for the prediction of effects of fire on structural behaviour.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 June 2017

Lorenzo Lelli and Jonas Loutan

This paper aims to detail the advanced natural fire simulations that were carried out for the composite steel-reinforced concrete structure of the JTI Building in Geneva…

Abstract

Purpose

This paper aims to detail the advanced natural fire simulations that were carried out for the composite steel-reinforced concrete structure of the JTI Building in Geneva, Switzerland. The results of these analyses led to a significant reduction of in the fireproofing of the steel floor framing.

Design/methodology/approach

Several scenarios were studied considering different thermal behaviours of the peripheral cladding. Despite the small thickness of the resisting slabs, the analyses performed with SAFIR software showed that the typical wide storey bay (12 × 15.86 m) can resist to the design’s fire temperatures without the protection of the main and secondary beams while the spandrels remain protected. For study completeness, the composite frame-membrane model was also simulated with Hasemi-localized fire routines on SAFIR.

Findings

The analyses have showed that the membrane behaviour of composite slabs under fire allows a significant reduction of the fire protection, even in case of small thickness of the concrete topping. The increase of the reinforcement ratio to sustain the membrane forces is widely compensated by the savings related to the fireproofing of the steel framing.

Practical/implications

A natural fire approach is particularly advisable in case of fully glazed buildings. In fact when the façade collapses, the entry of a large cold air quantity limits the increase of the gas temperature inside the compartment.

Originality/value

The analyses were carried out with recent SAFIR routines for localized fires (Hasemi fire model) and represent one of the first applications in practice. The issue of the rebar orientation in mesh is raised out. The latest SAFIR release allows the definition of a global orientation of the rebars and amends the issue.

Details

Journal of Structural Fire Engineering, vol. 9 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder…

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 12 September 2016

Nicola Tondini, Andrea Morbioli, Olivier Vassart, Sullivan Lechêne and Jean-Marc Franssen

This paper aims to present the assumptions and the issues that arise when developing an integrated modelling methodology between a computational fluid dynamics (CFD) software…

Abstract

Purpose

This paper aims to present the assumptions and the issues that arise when developing an integrated modelling methodology between a computational fluid dynamics (CFD) software applied to compartment fires and a finite element (FE) software applied to structural systems.

Design/methodology/approach

Particular emphasis is given to the weak coupling approach developed between the CFD code fire dynamics simulator (FDS) and the FE software SAFIR. Then, to show the potential benefits of such a methodology, a multi-storey steel-concrete composite open car park was considered.

Findings

Results show that the FDS–SAFIR coupling allows overcoming shortcomings of simplified models by performing the thermal analysis in the structural elements based on a more advanced modelling of the fire development, whereas it appears that the Hasemi model is more conservative in terms of thermal action.

Originality/value

A typical design approach using the Hasemi model is compared with a more advanced analysis that relies on the proposed FDS–SAFIR coupling.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 September 2019

Richard Walls, Celeste Viljoen and Hennie de Clercq

This paper aims to provide a parametric investigation into the behaviour of steel, concrete and composite beams exposed to fire. This investigation gives insight into the…

Abstract

Purpose

This paper aims to provide a parametric investigation into the behaviour of steel, concrete and composite beams exposed to fire. This investigation gives insight into the structural behaviour of elements experiencing thermal and mechanical loading illustrating reasons for observed global structural behaviour, and identifying how selected design parameters influence results obtained. Non-linear heating/thermal bowing behaviour is specifically considered.

Design/methodology/approach

Cross-sectional stresses and strains, resultant thermal forces, bending stiffness, axial stiffness and deflections are plotted for beams subjected to different fire regimes or input values. The impact of changes in input parameters on beam section properties is illustrated. Unusual structural responses, localised effects and general trends are identified in relation to variations in thermal gradients, concrete tensile capacity, standard fire exposure time and the assumed concrete flange widths of composite beams.

Findings

Stress-strain plots highlighting cross-sectional structural behaviour, trends in beam properties and the influence of design parameters are provided. Some counter-intuitive behaviour is explained, such as increased member stiffness being offset by increased thermal effects, leading to this parameter having negligible impact on global behaviour but a significant effect on local stresses and strains. Increased concrete strengths may lead to increased thermal deformations, whilst the inclusion of concrete tensile capacity typically has a minimal influence.

Research limitations/implications

The research focusses on cross-sectional properties, although results generated illustrate how global behaviour is affected.

Practical implications

Design engineers are made aware of how selected input values influence predicted structural response. Also, localised stress and strain behaviour relative to imposed loads and thermal effects can be identified.

Originality/value

This paper provides novel insight into the (sometimes counter-intuitive) behaviour of beams exposed to fire, highlighting trends and the influence of important input parameters on predicted response.

Details

Journal of Structural Fire Engineering, vol. 11 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 August 2021

Paulo A.G. Piloto, Carlos Balsa, Felipe Macedo Macêdo Gomes and Bergson Matias

Most of the numerical research and experiments on composite slabs with a steel deck have been developed to study the effect of fire during the heating phase. This manuscript aims…

Abstract

Purpose

Most of the numerical research and experiments on composite slabs with a steel deck have been developed to study the effect of fire during the heating phase. This manuscript aims to describe the thermal behaviour of composite slabs when submitted to different fire scenarios, considering the heating and cooling phase.

Design/methodology/approach

Three-dimensional numerical models, based on finite elements, are developed to analyse the temperatures inside the composite slab and, consequently, to estimate the fire resistance, considering the insulation criteria (I). The numerical methods developed are validated with experimental results available in the literature. In addition, this paper presents a parametric study of the effects on fire resistance caused by the thickness of the concrete part of the slab as well as the natural fire scenario.

Findings

The results show that, depending on the fire scenario, the fire resistance criterion can be reached during the cooling phase, especially for the thickest composite slabs. Based on the results, new coefficients are proposed for the original simplified model, proposed by the standard.

Originality/value

The developed numerical models allow us to realistically simulate the thermal effects caused by a natural fire in a composite slab and the new proposal enables us to estimate the fire resistance time of composite slabs with a steel deck, even if it occurs in the cooling phase.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 9 February 2022

Naoya Yotsumoto, Takeo Hirashima and Koji Toyoda

This paper aims to investigate the fire performance of composite beams when considering the hogging moment resistance of the fin-plate beam-to-girder joints including the effect…

Abstract

Purpose

This paper aims to investigate the fire performance of composite beams when considering the hogging moment resistance of the fin-plate beam-to-girder joints including the effect of continuity of reinforcements.

Design/methodology/approach

Experiments on composite beams with fin-plate joints protected only at the beam ends are conducted. The test parameter is the specification of reinforcement, which affects the rotational restraint of the beam ends. In addition, a simple method for predicting the failure time of the beam using an evaluation model based on the bending moment resistance of the beam considering the hogging moment resistance of the fin-plate joint and the reinforcement is also presented.

Findings

The test results indicate that the failure time of the beam is extended by the hogging moment resistance of the joints. This is particularly noticeable when using a reinforcing bar with a large plastic deformation capability. The predicted failure times based on the evaluation method corresponded well with the test results.

Originality/value

Recent studies have proposed large deformation analysis methods using FEM that can be used for fire-resistant design of beams including joints, but these cannot always be applicable in practice due to the cost and its complexity. Our method can consider the hogging moment resistance of the joint and the temperature distribution in the axial direction using a simple method without requirement of FEM.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 50