Search results

1 – 10 of over 1000
Article
Publication date: 24 August 2021

Sunthorn Chaitat, Nattapon Chantarapanich and Sujin Wanchat

This paper aims to investigate effect of infill density, fabricated built orientation and dose of gamma radiation to mechanical tensile and compressive properties of polylactic…

Abstract

Purpose

This paper aims to investigate effect of infill density, fabricated built orientation and dose of gamma radiation to mechanical tensile and compressive properties of polylactic acid (PLA) part fabricated by fused deposit modelling (FDM) technique for medical applications.

Design/methodology/approach

PLA specimens for tensile and compressive tests were fabricated using FDM machine. The specimens geometry and test method were referred to ASTM D638 and ASTM D695, respectively. Three orientations under consideration were flat, edge and upright, whereas the infill density ranged from 0 to 100%. The gamma radiation dose used to expose to specimens was 25 kGy. The collected data included stress and strain, which was used to find mechanical properties, i.e. yield strength, ultimate tensile strength (UTS), fracture strength, elongation at yield, elongation at UTS and elongation at break. The t-test was used to access the difference in mechanical properties.

Findings

Compressive mechanical properties is greater than tensile mechanical properties. Increasing number of layer parallel to loading direction and infill density, it enhances the material property. Upright presents the lowest mechanical property in tensile test, but greatest in compressive test. Upright orientation should not be used for part subjecting to tensile load. FDM is more proper for part subjecting to compressive load. FDM part requires undergoing gamma ray for sterilisation, the infill density no less than 70 and 60% should be selected for part subjecting to tensile and compressive load, respectively.

Originality/value

This study investigated all mechanical properties in both tension and compression as well as exposure to gamma radiation. The results can be applied in selection of FDM parameters for medical device manufacturing.

Details

Rapid Prototyping Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 July 2017

Muhammad Masood Rafi, Tariq Aziz and Sarosh Hashmat Lodi

This paper aims to present the results of testing of low-strength concrete specimens exposed to elevated temperatures. These data are limited in the existing literature and do not…

Abstract

Purpose

This paper aims to present the results of testing of low-strength concrete specimens exposed to elevated temperatures. These data are limited in the existing literature and do not exist in Pakistan.

Design/methodology/approach

An experimental testing programme has been employed. Cylindrical specimens of 100 × 200 mm were used in the testing programme. These were heated at temperatures which were varied from 100°C to 900°C in increment of 100°C. Similar specimens were tested at ambient temperature as control specimens. The compressive and tensile properties of heat treated specimens were determined.

Findings

The colour of concrete started to change at 300°C and hairline cracks appeared at 400°C. Explosive spalling was observed in few specimens in the temperature range of 400°C-650°C which could be attributed to the pore pressure generated by steam. Significant loss of concrete compressive strength occurred on heating temperatures larger than 600°C, and the residual compressive strength was found to be 15 per cent at 900°C. Residual tensile strength of concrete became less than 10 per cent at 900°C. The loss of concrete stiffness reached 85 per cent at 600°C. Residual Poisson’s ratio of concrete increased at high temperatures and became nearly six times larger at 900°C as compared to that at ambient temperature.

Research limitations/implications

The parameters of the study included heating temperature and effects of temperature on strength and stiffness properties of the concrete specimens.

Practical implications

Building fire incidents have increased in Pakistan. As a large number of reinforced concrete (RC) buildings exist in the country, the data related to elevated temperature properties of concrete are required. These data are not available in Pakistan presently. The study aims at providing this information for the design engineers to enable them to assess and increase fire resistance of RC structural members.

Originality/value

The presented study is unique in its nature in that there is no published contribution to date, to the best of authors’ knowledge, which has been carried out to assess the temperature-dependent mechanical properties of concrete in Pakistan.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 February 2020

Ghasem Pachideh and Majid Gholhaki

With respect to the studies conducted so far and lack of researches on the post-heat behavior of cement mortars containing pozzolanic materials, the purpose of this paper is to…

Abstract

Purpose

With respect to the studies conducted so far and lack of researches on the post-heat behavior of cement mortars containing pozzolanic materials, the purpose of this paper is to investigate the post-heat mechanical characteristics (i.e. compressive, tensile and flexural strength) of cement mortars containing granulated blast-furnace slag (GBFS) and silica fume (SF). In doing so, selected temperatures include 25, 100, 250, 500, 700 and 9000c. Last, the X-ray diffraction test was conducted to study the microstructure of mixtures and subsequently, the results were presented as power-one mathematical relations.

Design/methodology/approach

Totally, 378 specimens were built to conduct flexural, compressive and tensile strength tests. Accordingly, these specimens include cubic and prismatic specimens with dimensions of 5 × 5 × 5 cm and 16 × 4 × 4 cm, respectively, to conduct compressive and flexural strength tests together with briquette specimen used for tensile strength test in which cement was replaced by 7, 14 and 21 per cent of SF and GBFS. To study the effect of temperature, the specimens were heated. In this respect, they were heated with a rate of 5°C/min and exposed to temperatures of 25 (ordinary temperature), 100, 250, 500, 700 and 900°C.

Findings

On the basis of the results, the most profound effect of using GBFS and SF, respectively, takes place in low (up to 250°C) and high (500°C and greater degrees) temperatures. Quantitatively, the compressive, tensile and flexural strengths were enhanced by 73 and 180 per cent, 45 and 100 per cent, 106 and 112 per cent, respectively, in low and high temperatures. In addition, as the temperature elevates, the particles of specimens containing SF and GBFS shrink less in size compared to the reference specimen.

Originality/value

The specimens were cured according to ASTMC192 after 28 days placement in the water basin. First, in compliance with what has been specified by the mix design, the mortar, including pozzolanic materials and superplasticizer, was prepared and then, the sampling procedure was conducted on cubic specimens with dimension of 5 × 5 × 5 mm for compressive strength test, prismatic specimens with dimensions of 16 × 4 × 4 mm for flexural strength test and last, briquette specimens were provided to conduct tensile strength tests (for each temperature and every test, three specimens were built).

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 March 2017

Mohamad Mahmoudi, Alaa Elwany, Aref Yadollahi, Scott M. Thompson, Linkan Bian and Nima Shamsaei

The purpose of this paper is to understand the effect of four different factors: building orientation, heat treatment (solution annealing and aging), thermal history and process…

2650

Abstract

Purpose

The purpose of this paper is to understand the effect of four different factors: building orientation, heat treatment (solution annealing and aging), thermal history and process parameters on the mechanical properties and microstructural features of 17-4 precipitation hardening (PH) stainless steel (SS) parts produced using selective laser melting (SLM).

Design/methodology/approach

Various sets of test samples were built on a ProX 100™ SLM system under argon environment. Characterization studies were conducted using mechanical tensile and compression test, microhardness test, optical microscopy, X-ray diffraction and scanning electron microscopy.

Findings

Results indicate that building orientation has a direct effect on the mechanical properties of SLM parts, as vertically built samples exhibit lower yield and tensile strengths and elongation to failure. Post-SLM heat treatment proved to have positive effects on part strength and hardness, but it resulted in reduced ductility. Longer inter-layer time intervals between the melting of successive layers allow for higher austenite content because of lower cooling rates, thus decreasing material hardness. On the other hand, tensile properties such as elongation to failure, yield strength and tensile strength were not significantly affected by the change in inter-layer time intervals. Similar to other AM processes, SLM process parameters were shown to be instrumental in achieving desirable part properties. It is shown that without careful setting of process parameters, parts with defects (porosity and unmelted powder particles) can be produced.

Originality/value

Although the manufacturing of 17-4 PH SS using SLM has been investigated in the literature, the paper provides the first comprehensive study on the effect of different factors on mechanical properties and microstructure of SLM 17-4 PH. Optimizing process parameters and using heat treatment are shown to improve the properties of the part.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2016

David Impens and R.J. Urbanic

The purpose of this paper is to characterize mechanical properties (tensile, compressive and flexural) for the three-dimensional printing (3DP) process, using various common…

Abstract

Purpose

The purpose of this paper is to characterize mechanical properties (tensile, compressive and flexural) for the three-dimensional printing (3DP) process, using various common recommended infiltrate materials and post-processing conditions.

Design/methodology/approach

A literature review is conducted to assess the information available related to the mechanical properties, as well as the experimental methodologies which have been used when investigating the 3D printing process characteristics. Test samples are designed, and a methodology to measure infiltrate depths is presented. A full factorial experiment is conducted to collect the tensile, compressive and bending forces for a set of infiltrates and build orientations. The impact of the infiltrate type and depth with respect to the observed strength characteristics is evaluated.

Findings

For most brittle materials, the ultimate compression strength is much larger than the ultimate tensile strength, which is shown in this work. Unique stress–strain curves are generated from the infiltrate and build orientation conditions; however, the compressive strength trends are more consistent in behavior compared to the tensile and flexural results. This comprehensive study shows that infiltrates can significantly improve the mechanical characteristics, but performance degradation can also occur, which occurred with the Epsom salts infiltrates.

Research limitations/implications

More experimental research needs to be performed to develop predictive models for design and fabrication optimization. The material-infiltrate performance characteristics vary per build orientation; hence, experimental testing should be performed on intermediate angles, and a double angle experiment set should also be conducted. By conducting multiple test scenarios, it is now understood that this base material-infiltrate combination does not react similar to other materials, and any performance characteristics cannot be easily predicted from just one study.

Practical implications

These results provide a foundation for a process design and post-processing configuration database, and downstream design and optimization models. This research illustrates that there is no “best” solution when considering material costs, processing options, safety issues and strength considerations. This research also shows that specific testing is required for new machine–material–infiltrate combinations to calibrate a performance model.

Originality/value

There is limited published data with respect to the strength characteristics that can be achieved using the 3DP process. No published data with respect to stress–strain curves are available. This research presents tensile, compressive and flexural strength and strain behaviors for a wide variety of infiltrates, and post-processing conditions. A simple, unique process is presented to measure infiltrate depths. The observed behaviors are non-linear and unpredictable.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 May 2021

Supphachai Nathaphan and Worrasid Trutassanawin

This work aims to investigate the interaction effects of printing process parameters of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM…

Abstract

Purpose

This work aims to investigate the interaction effects of printing process parameters of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) technology on both the dimensional accuracy and the compressive yield stress. Another purpose is to determine the optimum process parameters to achieve the maximum compressive yield stress and dimensional accuracy at the same time.

Design/methodology/approach

The standard cylindrical specimens which produced from ABS by using an FDM 3D printer were measured dimensions and tested compressive yield stresses. The effects of six process parameters on the dimensional accuracy and compressive yield stress were investigated by separating the printing orientations into horizontal and vertical orientations before controlling five factors: nozzle temperature, bed temperature, number of shells, layer height and printing speed. After that, the optimum process parameters were determined to accomplish the maximum compressive yield stress and dimensional accuracy simultaneously.

Findings

The maximum compressive properties were achieved when layer height, printing speed and number of shells were maintained at the lowest possible values. The bed temperature should be maintained 109°C and 120°C above the glass transition temperature for horizontal and vertical orientations, respectively.

Practical implications

The optimum process parameters should result in better FDM parts with the higher dimensional accuracy and compressive yield stress, as well as minimal post-processing and finishing techniques.

Originality/value

The important process parameters were prioritized as follows: printing orientation, layer height, printing speed, nozzle temperature and bed temperature. However, the number of shells was insignificant to the compressive property and dimensional accuracy. Nozzle temperature, bed temperature and number of shells were three significant process parameters effects on the dimensional accuracy, while layer height, printing speed and nozzle temperature were three important process parameters influencing compressive yield stress. The specimen fabricated in horizontal orientation supported higher compressive yield stress with wide processing ranges of nozzle and bed temperatures comparing to the vertical orientation with limited ranges.

Article
Publication date: 20 April 2012

S. Dadbakhsh, L. Hao and N. Sewell

Selective laser melting (SLM) is increasingly used for the manufacture of end‐use metal tools and parts, requiring the careful identification of a range of appropriate process…

3242

Abstract

Purpose

Selective laser melting (SLM) is increasingly used for the manufacture of end‐use metal tools and parts, requiring the careful identification of a range of appropriate process parameters and conditions to achieve desirable properties and quality. Process conditions such as the relation between layout of parts and internal gas flow within the SLM platform can influence the consolidation of metal powers and therefore the quality and properties of the final parts. The purpose of this paper is to investigate the effect of part layout on quality and mechanical properties of cylindrical 316L stainless steel parts manufactured by SLM.

Design/methodology/approach

The cylindrical 316L stainless steel parts were manufactured in two directions, one perpendicular to the gas flow direction and one parallel to it. The investigation first focuses on visual inspection and porosity measurements to compare the quality factors such as delamination and porosity of the parts. A mechanical test procedure including tensile, compressive, and shear‐punch is used to assess the mechanical properties of the SLM specimens. Cross sectional analyses are carried out to better understand of material response under mechanical tests.

Findings

The results show that the part layout and gas flow condition have a negligible influence on porosity formation, however they notably affect the thermal stress and bonding strength between particles which consequently influences the mechanical properties of final parts. The manufacturing of parts perpendicular to gas flow seems to be more advantageous rather than parallel to gas flow.

Originality/value

This is the first work investigating the effects of the SLM layout on the quality and mechanical properties of stainless steel specimens. The results can be used in quality control purposes and for quality improvement of SLM parts.

Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

3681

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2021

Chunwei Li, Quansheng Sun and Yancheng Liu

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built…

Abstract

Purpose

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built bridges. Due to the defective lateral hinge joints, hollow slab bridges are prone to cracking of hinge joint between plates, transverse connection failure and stress of single plates under the action of long-term overload and repeated load. These phenomena seriously affect the bending capacity of the hollow slab bridge. This paper aims to describe a new method of simply supported hollow slab bridge reinforcement called polyurethane–cement (PUC) composite flexural reinforcement.

Design/methodology/approach

This paper first studies the preparation and tensile and compressive properties of PUC composite materials. Then, relying on the actual bridge strengthening project, the 5 × 20 m prestressed concrete simply supported hollow slab was reinforced with PUC composites with a thickness of 3 cm within 18 m of the beam bottom. Finally, the load test was used to compare the performance of the bridge before and after the strengthening.

Findings

Results showed that PUC has high compressive and tensile strengths of 72 and 46 MPa. The static test revealed that the measured values and verification coefficients of the measured points were reduced compared with those before strengthening, the deflection and strain were reduced by more than 15%, the measured section stiffness was improved by approximately 20%. After the strengthening, the lateral connection of the bridge, the strength and rigidity of the structure and the structural integrity and safety reserves were all significantly improved. The application of PUC to the flexural strengthening of the bridge structure has a significant effect.

Originality/value

As a new type of material, PUC composite is light, remarkable and has good performance. When used in the bending strengthening of bridge structures, this material can improve the strength, rigidity, safety reserve and bending capacity of bridges, thus demonstrating its good engineering application prospect.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 January 2018

Jatender Pal Singh and Pulak Mohan Pandey

The requirements of open cell porous regular interconnected metallic structure (OCPRIMS) in applications such as heat exchangers, sound absorption, fluid flow control, spark…

Abstract

Purpose

The requirements of open cell porous regular interconnected metallic structure (OCPRIMS) in applications such as heat exchangers, sound absorption, fluid flow control, spark arresters and biocompatible inserts have been increased. As per available technology in the present scenario, only the metallic-based rapid prototyping (RP) machines can guarantee fabrication of OCPRIMS. Metal-based RP machines are capital-intensive. So, this study aims to develop a technique for fabrication of OCPRIMS economically using three-dimensional printing (3 DP) and pressureless sintering.

Design/methodology/approach

Three computer-aided design (CAD) models of varying designed interconnected porosity 73, 70 and 60 per cent were modeled to target metallic porosity 27, 30 and 40 per cent. The same were fabricated with ceramic-based powder using 3 DP. Thereafter, spherical bronze powder with average size of 200 µm was filled and sintered in pressureless manner under inert atmosphere of argon. After sintering, the specimens were cleaned with the help of pricking needles and high-pressure water. It flushed the burnt ceramic powder and allowed metallic portion to remain intact. The obtained specimens were inverse of CAD/3 DP models. The dimensional measurement at different stages of fabrication was carried out to find shrinkage. Sintered density and interconnected porosity were measured using Archimedes’ principle. The characterization of the fabricated specimens was done with the help of microstructure analysis, scanning electron microscopy and energy dispersive x-ray analysis. Mechanical properties were assessed using compressive, tensile and Charpy tests.

Findings

The feasibility has been explored successfully to fabricate OCPRIMS of phosphor bronze using 3 DP and pressureless sintering process. Interconnected porosity of 51.45, 56.45, 64.09 per cent of final metallic specimens has been observed against the targeted 27, 30 and 40 per cent. The increase in pore dimensions up to 19.13 per cent and shrinkage up to 5.44 per cent of outer dimensions were found to be the main causes of increase in interconnected porosity level. The characterization results exhibit the behavior of pressureless sintering process and stability of the fabricated specimens. Mechanical properties of fabricated structures are found to be dependent on porosity and strut diameter. Compressive and tensile strength decrease with the increase in porosity for strut diameter less than 1 mm, whereas they increase with the increase in strut diameter of 1 mm or more. A similar trend has been observed for impact strength also.

Originality/value

This paper explores the feasibility to fabricate OCPRIMS economically using 3 DP and pressureless sintering process.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000