Search results

1 – 10 of over 5000
Article
Publication date: 31 May 2023

Ziqi Chai, Chao Liu and Zhenhua Xiong

Template matching is one of the most suitable choices for full six degrees of freedom pose estimation in many practical industrial applications. However, the increasing number of…

133

Abstract

Purpose

Template matching is one of the most suitable choices for full six degrees of freedom pose estimation in many practical industrial applications. However, the increasing number of templates while dealing with a wide range of viewpoint changes results in a long runtime, which may not meet the real-time requirements. This paper aims to improve matching efficiency while maintaining sample resolution and matching accuracy.

Design/methodology/approach

A multi-pyramid-based hierarchical template matching strategy is proposed. Three pyramids are established at the sphere subdivision, radius and in-plane rotation levels during the offline template render stage. Then, a hierarchical template matching is performed from the highest to the lowest level in each pyramid, narrowing the global search space and expanding the local search space. The initial search parameters at the top level can be determined by the preprocessing of the YOLOv3 object detection network to further improve real-time performance.

Findings

Experimental results show that this matching strategy takes only 100 ms under 100k templates without loss of accuracy, promising for real industrial applications. The authors further validated the approach by applying it to a real robot grasping task.

Originality/value

The matching framework in this paper improves the template matching efficiency by two orders of magnitude and is validated using a common template definition and viewpoint sampling methods. In addition, it can be easily adapted to other template definitions and viewpoint sampling methods.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 February 2009

Chern‐Sheng Lin, Kuo‐Chun Wu, Yun‐Long Lay, Chi‐Chin Lin and Jim‐Min Lin

The purpose of this paper is to propose an automatic pattern matching template generating method for the automatic optical inspection system in TFT LCD assembly and positioning…

Abstract

Purpose

The purpose of this paper is to propose an automatic pattern matching template generating method for the automatic optical inspection system in TFT LCD assembly and positioning process, to improve the conventional image technology. Besides, focusing on integrating the image system with the existing control system, the double aligner mark searching time is decreased to reduce the working time of the integrated system.

Design/methodology/approach

The improved pattern matching method of genetic algorithm was adopted, including setting for template image selecting, encoding, calculating fitness function, pattern matching, template generating and genetic algorithm steps. The predetermined pixels were selected from the target template based on the minimum difference to the block image to be tested by utilizing the genetic algorithm, and the other pixels which have not been selected were neglected.

Findings

The selected pixels were encoded for recording by sequence mode, and then the target template and the image to be tested were compared based on the calculated fitness function. This method has the advantages of using the fitness function to reduce the searching time, with the help of genetic algorithm to find the optimal target template, and saving memory space by recording target template based on the sequence mode.

Research limitations/implications

The genetic algorithm used in this study is a kind of optimal tool free from gradient data. As long as the fitness function and after continuous iteration are determined, the optimal solution can be found out, and then the optimal target template can be generated.

Practical implications

This system uses fitness function to reduce the pattern matching time. Plural pixels are preset inside the target template, and its fitness function value is calculated. When the target template is compared with the image to be tested, only the fitness function value (also the difference of the plural pixels) is calculated and compared.

Originality/value

The remaining pixels are neglected, so that the searching time can be reduced greatly. The sequence mode is used to save the required memory space for recording target template. Since sequence mode is adopted to record the information of selected pixels, lots of required memory space for recording target template information will be saved.

Details

Assembly Automation, vol. 29 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 April 2022

Tian-Jian Luo

Steady-state visual evoked potential (SSVEP) has been widely used in the application of electroencephalogram (EEG) based non-invasive brain computer interface (BCI) due to its…

Abstract

Purpose

Steady-state visual evoked potential (SSVEP) has been widely used in the application of electroencephalogram (EEG) based non-invasive brain computer interface (BCI) due to its characteristics of high accuracy and information transfer rate (ITR). To recognize the SSVEP components in collected EEG trials, a lot of recognition algorithms based on template matching of training trials have been proposed and applied in recent years. In this paper, a comparative survey of SSVEP recognition algorithms based on template matching of training trails has been done.

Design/methodology/approach

To survey and compare the recently proposed recognition algorithms for SSVEP, this paper regarded the conventional canonical correlated analysis (CCA) as the baseline, and selected individual template CCA (ITCCA), multi-set CCA (MsetCCA), task related component analysis (TRCA), latent common source extraction (LCSE) and a sum of squared correlation (SSCOR) for comparison.

Findings

For the horizontal comparative of the six surveyed recognition algorithms, this paper adopted the “Tsinghua JFPM-SSVEP” data set and compared the average recognition performance on such data set. The comparative contents including: recognition accuracy, ITR, correlated coefficient and R-square values under different time duration of the SSVEP stimulus presentation. Based on the optimal time duration of stimulus presentation, the author has also compared the efficiency of the six compared algorithms. To measure the influence of different parameters, the number of training trials, the number of electrodes and the usage of filter bank preprocessing were compared in the ablation study.

Originality/value

Based on the comparative results, this paper analyzed the advantages and disadvantages of the six compared SSVEP recognition algorithms by considering application scenes, real-time and computational complexity. Finally, the author gives the algorithms selection range for the recognition of real-world online SSVEP-BCI.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 October 2013

Du-Ming Tsai and Tzu-Hsun Tseng

Mobile robots become more and more important for many potential applications such as navigation and surveillance. The paper proposes an image processing scheme for moving object…

Abstract

Purpose

Mobile robots become more and more important for many potential applications such as navigation and surveillance. The paper proposes an image processing scheme for moving object detection from a mobile robot with a single camera. It especially aims at intruder detection for the security robot on either smooth paved surfaces or uneven ground surfaces.

Design/methodology/approach

The core of the proposed scheme is the template matching with basis image reconstruction for the alignment between two consecutive images in the video sequence. The most representative template patches in one image are first automatically selected based on the gradient energies in the patches. The chosen templates then form a basis matrix, and the instances of the templates in the subsequent image are matched by evaluating their reconstruction error from the basis matrix. For the two well-aligned images, a simple and fast temporal difference can thus be applied to identify moving objects from the background.

Findings

The proposed template matching can tolerate in rotation (±10°) and (±10°) in scaling. By adding templates with larger rotational angles in the basis matrixes, the proposed method can be further extended for the match of images from severe camera vibrations. Experimental results of video sequences from a non-stationary camera have shown that the proposed scheme can reliably detect moving objects from the scenes with either minor or severe geometric transformation changes. The proposed scheme can achieve a fast processing rate of 32 frames per second for an image of size 160×120.

Originality/value

The basic approaches for moving object detection with a mobile robot are feature-point match and optical flow. They are relatively computational intensive and complicated to implement for real-time applications. The proposed template selection and template matching are very fast and easy to implement. Traditional template matching methods are based on sum of squared differences or normalized cross correlation. They are very sensitive to minor displacement between two images. The proposed new similarity measure is based on the reconstruction error from the test image and its reconstruction from the linear combination of the templates. It is thus robust under rotation and scale changes. It can be well suited for mobile robot surveillance.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 October 2022

Meng Xiao, Nian Cai, Zhuokun Mo, Shule Yan, Nili Tian, Jing Ma and Han Wang

Statistical modeling has been successfully applied to integrated circuit (IC) solder joint inspection. However, there are some inherent problems in previous statistical modeling…

Abstract

Purpose

Statistical modeling has been successfully applied to integrated circuit (IC) solder joint inspection. However, there are some inherent problems in previous statistical modeling methods. This paper aims to propose an adaptive statistical modeling method to further improve the inspection performance for IC solder joints.

Design/methodology/approach

First, different pixels in the IC solder joint image were modeled by different templates, each of which was composed of the hue value of the pixel and a proposed template significance factor. Then, the potential defect image was obtained by adaptive template matching and the potential defect threshold for each pixel. It was noted that the number of templates, matching distance threshold, potential defect threshold and updating rate were adaptively updated during model training. Finally, the trained statistical model was used to inspect the IC solder joints by means of defect degree.

Findings

Experimental results indicated that the proposed adaptive schemes greatly contributed to the inspection performance of statistical modeling. Also, the proposed inspection method achieved better performance compared with some state-of-the-art inspection methods.

Originality/value

The proposed method offers a promising approach for IC solder joint inspection, which establishes different numbers of templates constructed by pixel values and template significance factors for different pixels. Also, some important parameters were adaptively updated with the updating of the model, which contributed to the inspection performance of the model.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 10 December 2019

Xiaoming Zhang, Mingming Meng, Xiaoling Sun and Yu Bai

With the advent of the era of Big Data, the scale of knowledge graph (KG) in various domains is growing rapidly, which holds huge amount of knowledge surely benefiting the…

Abstract

Purpose

With the advent of the era of Big Data, the scale of knowledge graph (KG) in various domains is growing rapidly, which holds huge amount of knowledge surely benefiting the question answering (QA) research. However, the KG, which is always constituted of entities and relations, is structurally inconsistent with the natural language query. Thus, the QA system based on KG is still faced with difficulties. The purpose of this paper is to propose a method to answer the domain-specific questions based on KG, providing conveniences for the information query over domain KG.

Design/methodology/approach

The authors propose a method FactQA to answer the factual questions about specific domain. A series of logical rules are designed to transform the factual questions into the triples, in order to solve the structural inconsistency between the user’s question and the domain knowledge. Then, the query expansion strategies and filtering strategies are proposed from two levels (i.e. words and triples in the question). For matching the question with domain knowledge, not only the similarity values between the words in the question and the resources in the domain knowledge but also the tag information of these words is considered. And the tag information is obtained by parsing the question using Stanford CoreNLP. In this paper, the KG in metallic materials domain is used to illustrate the FactQA method.

Findings

The designed logical rules have time stability for transforming the factual questions into the triples. Additionally, after filtering the synonym expansion results of the words in the question, the expansion quality of the triple representation of the question is improved. The tag information of the words in the question is considered in the process of data matching, which could help to filter out the wrong matches.

Originality/value

Although the FactQA is proposed for domain-specific QA, it can also be applied to any other domain besides metallic materials domain. For a question that cannot be answered, FactQA would generate a new related question to answer, providing as much as possible the user with the information they probably need. The FactQA could facilitate the user’s information query based on the emerging KG.

Details

Data Technologies and Applications, vol. 54 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 21 June 2011

Ya‐Hui Tsai, Du‐Ming Tsai, Wei‐Chen Li, Wei‐Yao Chiu and Ming‐Chin Lin

The purpose of this paper is to develop a robot vision system for surface defect detection of 3D objects. It aims at the ill‐defined qualitative items such as stains and scratches.

Abstract

Purpose

The purpose of this paper is to develop a robot vision system for surface defect detection of 3D objects. It aims at the ill‐defined qualitative items such as stains and scratches.

Design/methodology/approach

A robot vision system for surface defect detection may counter: high surface reflection at some viewing angles; and no reference markers in any sensed images for matching. A filtering process is used to separate the illumination and reflection components of an image. An automatic marker‐selection process and a templatematching method are then proposed for image registration and anomaly detection in reflection‐free images.

Findings

Tests were performed on a variety of hand‐held electronic devices such as cellular phones. Experimental results show that the proposed system can reliably avoid reflection surfaces and effectively identify small local defects on the surfaces in different viewing angles.

Practical implications

The results have practical implications for industrial objects with arbitrary surfaces.

Originality/value

Traditional visual inspection systems mainly work for two‐dimensional planar surfaces such as printed circuit boards and wafers. The proposed system can find the viewing angles with minimum surface reflection and detect small local defects under image misalignment for three‐dimensional objects.

Details

Industrial Robot: An International Journal, vol. 38 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 June 2017

Mehdi Habibi, Mohammad Shakarami and Ali Asghar Khoddami

Sensor networks have found wide applications in the monitoring of environmental events such as temperature, earthquakes, fire and pollution. A major challenge with sensor network…

Abstract

Purpose

Sensor networks have found wide applications in the monitoring of environmental events such as temperature, earthquakes, fire and pollution. A major challenge with sensor network hardware is their limited available energy resource, which makes the low power design of these sensors important. This paper aims to present a low power sensor which can detect sound waveform signatures.

Design/methodology/approach

A novel mixed signal hardware is presented to correlate the received sound signal with a specific sound signal template. The architecture uses pulse width modulation and a single bit digital delay line to propagate the input signal over time and analog current multiplier units to perform template matching with low power usage.

Findings

The proposed method is evaluated for a chainsaw signature detection application in forest environments, under different supply voltage values, input signal quantization levels and also different template sample points. It is observed that an appropriate combination of these parameters can optimize the power and accuracy of the presented method.

Originality/value

The proposed mixed signal architecture allows voltage and power reduction compared with conventional methods. A network of these sensors can be used to detect sound signatures in energy limited environments. Such applications can be found in the detection of chainsaw and gunshot sounds in forests to prevent illegal logging and hunting activities.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 December 2020

Reyes Rios-Cabrera, Ismael Lopez-Juarez, Alejandro Maldonado-Ramirez, Arturo Alvarez-Hernandez and Alan de Jesus Maldonado-Ramirez

This paper aims to present an object detection methodology to categorize 3D object models in an efficient manner. The authors propose a dynamically generated hierarchical…

Abstract

Purpose

This paper aims to present an object detection methodology to categorize 3D object models in an efficient manner. The authors propose a dynamically generated hierarchical architecture to compute very fast objects’ 3D pose for mobile service robots to grasp them.

Design/methodology/approach

The methodology used in this study is based on a dynamic pyramid search and fast template representation, metadata and context-free grammars. In the experiments, the authors use an omnidirectional KUKA mobile manipulator equipped with an RGBD camera, to localize objects requested by humans. The proposed architecture is based on efficient object detection and visual servoing. In the experiments, the robot successfully finds 3D poses. The present proposal is not restricted to specific robots or objects and can grow as much as needed.

Findings

The authors present the dynamic categorization using context-free grammars and 3D object detection, and through several experiments, the authors perform a proof of concept. The authors obtained promising results, showing that their methods can scale to more complex scenes and they can be used in future applications in real-world scenarios where mobile robot are needed in areas such as service robots or industry in general.

Research limitations/implications

The experiments were carried out using a mobile KUKA youBot. Scalability and more robust algorithms will improve the present proposal. In the first stage, the authors carried out an experimental validation.

Practical implications

The current proposal describes a scalable architecture, where more agents can be added or reprogrammed to handle more complicated tasks.

Originality/value

The main contribution of this study resides in the dynamic categorization scheme for fast detection of 3D objects, and the issues and experiments carried out to test the viability of the methods. Usually, state-of-the-art treats categories as rigid and make static queries to datasets. In the present approach, there are no fixed categories and they are created and combined on the fly to speed up detection.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 March 2009

Hadi Grailu, Mojtaba Lotfizad and Hadi Sadoghi‐Yazdi

The purpose of this paper is to propose a lossy/lossless binary textual image compression method based on an improved pattern matching (PM) technique.

Abstract

Purpose

The purpose of this paper is to propose a lossy/lossless binary textual image compression method based on an improved pattern matching (PM) technique.

Design/methodology/approach

In the Farsi/Arabic script, contrary to the printed Latin script, letters usually attach together and produce various patterns. Hence, some patterns are fully or partially subsets of some others. Two new ideas are proposed here. First, the number of library prototypes is reduced by detecting and then removing the fully or partially similar prototypes. Second, a new effective pattern encoding scheme is proposed for all types of patterns including text and graphics. The new encoding scheme has two operation modes of chain coding and soft PM, depending on the ratio of the pattern area to its chain code effective length. In order to encode the number sequences, the authors have modified the multi‐symbol QM‐coder. The proposed method has three levels for the lossy compression. Each level, in its turn, further increases the compression ratio. The first level includes applying some processing in the chain code domain such as omission of small patterns and holes, omission of inner holes of characters, and smoothing the boundaries of the patterns. The second level includes the selective pixel reversal technique, and the third level includes using the proposed method of prioritizing the residual patterns for encoding, with respect to their degree of compactness.

Findings

Experimental results show that the compression performance of the proposed method is considerably better than that of the best existing binary textual image compression methods as high as 1.6‐3 times in the lossy case and 1.3‐2.4 times in the lossless case at 300 dpi. The maximum compression ratios are achieved for Farsi and Arabic textual images.

Research limitations/implications

Only the binary printed typeset textual images are considered.

Practical implications

The proposed method has a high‐compression ratio for archiving and storage applications.

Originality/value

To the authors' best knowledge, the existing textual image compression methods or standards have not so far exploited the property of full or partial similarity of prototypes for increasing the compression ratio for any scripts. Also, the idea of combining the boundary description methods with the run‐length and arithmetic coding techniques has not so far been used.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 5000