Search results

1 – 6 of 6
Open Access
Article
Publication date: 11 October 2023

Abdulwasa B. Barnawi, Abdull Rahman A. Alfifi, Z.M.S. Elbarbary, Saad Fahed Alqahtani and Irshad Mohammad Shaik

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level…

Abstract

Purpose

Traditional level inverter technology has drawbacks in the aspect of Total harmonic distortion (THD) and switching losses for higher frequencies. Due to these drawbacks, two-level inverters have become unprofitable for high-power applications. Multilevel inverters (MLIs) are used to enhance the output waveform characteristics (i.e. low THD) and to offer various inverter topologies and switching methods.

Design/methodology/approach

MLIs are upgraded versions of two-level inverters that offer more output levels in current and voltage waveforms while lowering the dv/dt and di/dt ratios. This paper aims to review and compare the different topologies of MLI used in high-power applications. Single and multisource MLI's working principal and switching states for each topology are demonstrated and compared. A Simulink model system integrated using detailed circuit simulations in developed in MATLAB®–Simulink program. In this system, a constant voltage source connected to MLI to feed asynchronous motor with squirrel cage rotor type is used to demonstrate the efficacy of the MLI under different varying speed and torque conditions.

Findings

MLI has presented better control and good range of system parameters than two-level inverter. It is suggested that the MLIs like cascade-five-level and NPC-five-level have shown low current harmonics of around 0.43% and 1.87%, respectively, compared to two-level inverter showing 5.82%.

Originality/value

This study is the first of its kind comparing the different topologies of single and multisource MLIs. This study suggests that the MLIs are more suitable for high-power applications.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 2 February 2024

Xiongmin Tang, Zexin Zhou, Yongquan Chen, ZhiHong Lin, Miao Zhang and Xuecong Li

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is…

Abstract

Purpose

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is to design a high-performance power supply with a compact structure for excimer lamps in electronics application.

Design/methodology/approach

To design a high-performance power supply with a compact structure remains a challenge for excimer lamps in electronics application, a current-source type power supply in a single stage with power factor correction (PFC) is proposed. It consists of an excitation voltage generation unit and a PFC unit. By planning the modes of the excitation voltage generation unit, a bipolar pulse excitation voltage with a high rising and falling rate is generated. And a high power factor (PF) on the AC side is achieved by the interaction of a non-controlled rectifier and two inductors.

Findings

The experimental results show that not only a high-frequency and high-voltage bipolar pulse excitation voltage with a high average rising and falling rate (7.51GV/s) is generated, but also a high PF (0.992) and a low total harmonic distortion (5.54%) is obtained. Besides, the soft-switching of all power switches is realized. Compared with the sinusoidal excitation power supply and the current-source power supply, the proposed power supply in this paper can take advantage of the potential of excimer lamps.

Originality/value

A new high-performance power supply with a compact structure for DBD type excimer lamps is proposed. The proposed power supply can work stably in a wide range of frequencies, and the smooth regulation of the discharge power of the excimer lamp can be achieved by changing the switching frequency. The ideal excitation can be generated, and the soft switching can be realized. These features make this power supply a key player in the outstanding performance of the DBD excimer lamps application.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 September 2021

JiaRong Wang, Bo He and XiaoQiang Chen

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Two new symmetrical…

38

Abstract

Purpose

This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Two new symmetrical step-down topologies of star-connected autotransformers are proposed in this paper. Taking the equivalent capacity as the main parameter, the obtained topologies are modeled and analyzed in detail.

Design/methodology/approach

This paper adopts the research methods of design, modeling, analysis and simulation verification. First, the star-connected autotransformer is redesigned according to the design objective of symmetrical step-down topology. In addition, the mathematical model of two topologies is established and a detailed theoretical analysis is carried out. Finally, the theoretical results are verified by simulation.

Findings

Two symmetrical star-connected autotransformer step-down topologies are designed, the winding configurations of the corresponding topology are presented, the step-down ranges of these three topologies are calculated and the influence of step-down ratio on the equivalent capacity of autotransformer are analyzed. Through analysis, the target step-down topologies are obtained when the step-down ratio is [1.1, 5.4] and [1.1, 1.9] respectively.

Research limitations/implications

Because the selected research object is only a star-connected autotransformer, the research results may lack generality. Therefore, researchers are encouraged to further study the topologies of other autotransformers.

Practical implications

This paper includes the implications of the step-down ratio on the equivalent capacity of autotransformers and the configuration of transformer windings.

Originality/value

The topologies designed in this paper enable star-connected autotransformer in the 12-pulse rectifier to be applied in step-down circumstances rather than situations of harmonic reduction only. At the same time, this paper provides a way that can be used to redesign the autotransformer in other multi-pulse rectifier systems, so that those transformers can be used in voltage regulation.

Article
Publication date: 12 March 2024

Salma Benharref, Vincent Lanfranchi, Daniel Depernet, Tahar Hamiti and Sara Bazhar

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Abstract

Purpose

The purpose of this paper is to propose a new method that allows to compare the magnetic pressures of different pulse width modulation (PWM) strategies in a fast and efficient way.

Design/methodology/approach

The voltage harmonics are determined using the double Fourier integral. As for current harmonics and waveforms, a new generic model based on the Park transformation and a dq model of the machine was established taking saturation into consideration. The obtained analytical waveforms are then injected into a finite element software to compute magnetic pressures using nodal forces.

Findings

The overall proposed method allows to accelerate the calculations and the comparison of different PWM strategies and operating points as an analytical model is used to generate current waveforms.

Originality/value

While the analytical expressions of voltage harmonics are already provided in the literature for the space vector pulse width modulation, they had to be calculated for the discontinuous pulse width modulation. In this paper, the obtained expressions are provided. For current harmonics, different models based on a linear and a nonlinear model of the machine are presented in the referenced papers; however, these models are not generic and are limited to the second range of harmonics (two times the switching frequency). A new generic model is then established and used in this paper after being validated experimentally. And finally, the direct injection of analytical current waveforms in a finite element software to perform any magnetic computation is very efficient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

15

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 6 of 6