Search results

1 – 10 of 863
Open Access
Article
Publication date: 26 August 2024

Sung Suk Kim, Vina Nugroho and Liza Handoko

This study aimed to explore the determining factors for green bond markets in ASEAN plus three countries. In contrast to previous publications that primarily examined the…

Abstract

Purpose

This study aimed to explore the determining factors for green bond markets in ASEAN plus three countries. In contrast to previous publications that primarily examined the incentives for green bonds and institutional differences among economies, the analysis focused on the role of competition among sub-financial sectors in fostering the growth of green bond markets.

Design/methodology/approach

This study adopted Driscoll and Kraay fixed effect panel methods to account for country-level heterogeneity and enhance efficiency, using quarterly data from 2016 to 2022.

Findings

The findings showed that healthy competition among sub-financial sectors was crucial for the growth of green bond markets. Growth in specific sub-financial sectors such as brown corporate bond and stock markets as well as banks contributed positively to these markets. Variables related to market microstructure also had no significant impact on green bonds but macroeconomic factors did.

Practical implications

The findings suggested that governments should promote healthy competition among sub-financial sectors and implement diverse policies to ensure the sustainable growth of green bond markets.

Originality/value

This study further pioneered the importance of competition among sub-financial sectors for the development of green bond markets.

Details

Managerial Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0307-4358

Keywords

Article
Publication date: 19 July 2024

Fatih Huzeyfe Öztürk

Adhesive bonding is critical to the effectiveness and structural integrity of 3D printed components. The purpose of this study is to investigate the effect of joint configuration…

Abstract

Purpose

Adhesive bonding is critical to the effectiveness and structural integrity of 3D printed components. The purpose of this study is to investigate the effect of joint configuration on failure loads to improve the design and performance of single lap joints (SLJs) in 3D printed parts.

Design/methodology/approach

In this study, adherends were fabricated using material extrusion 3D printing technology with polyethylene terephthalate glycol (PETG). A toughened methacrylate adhesive was chosen to bond the SLJs after adherend printing. In this study, response surface methodology (RSM) was used to examine the effect of the independent variables of failure load, manufacturing time and mass on the dependent variable of joint configuration; adherend thickness (3.2, 4.0, 4.8, 5.6, 6.4, and 7.2 mm) and overlap lengths (12.7, 25.4, 38.1, and 50.8 mm) of 3D printed PETG SLJs.

Findings

The strength of the joints improved significantly with the increase in overlap length and adherend thickness, although the relationship was not linear. The maximum failure load occurred with a thickness of 7.2 mm and an overlap of 50.8 mm, whilst the minimum failure load was determined with a thickness of 3.2 mm and an overlap of 12.7 mm. The RSM findings show that the optimum failure load was achieved with an adherend thickness of 3.6 mm and an overlap length of 37.9 mm for SLJ.

Originality/value

This study provides insight into the optimum failure load for 3D printed SLJs, reducing SLJ production time and mass, producing lightweight structures due to the nature of 3D printing, and increasing the use of these parts in load-bearing applications.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 July 2024

Fredrick Mwania, Maina Maringa, Joseph Nsengimana and Jacobus Gert van der Walt

The current analysis was conducted to investigate the quality of surfaces and geometry of tracks printed using PolyMideTM CoPA, PolymaxTM PC and PolyMideTM PA6-CF materials…

Abstract

Purpose

The current analysis was conducted to investigate the quality of surfaces and geometry of tracks printed using PolyMideTM CoPA, PolymaxTM PC and PolyMideTM PA6-CF materials through fused deposition modelling (FDM). This study also examined the degree of fusion of adjacent filaments (tracks) to approximate the optimal process parameters of the three materials.

Design/methodology/approach

Images of fused adjacent filaments were acquired using scanning electron microscopy (SEM), after which, they were analysed using Image J Software and Minitab Software to determine the optimal process parameters.

Findings

The optimal process parameters for PolyMideTM CoPA are 0.25 mm, 40 mm/s, −0.10 mm, 255°C and 0.50 mm for layer thickness, printing speed, hatch spacing, extrusion temperature and extrusion width, respectively. It was also concluded that the optimal process parameters for PolymaxTM PC are 0.30 mm, 40 mm/s, 0.00 mm, 260°C and 0.6 mm for layer thickness, printing speed, hatch spacing, extrusion temperature and extrusion width, respectively.

Research limitations/implications

It was difficult to separate tracks printed using PolyMideTM PA6-CF from the support structure, making it impossible to examine and determine their degree of fusion using SEM.

Social implications

The study provides more knowledge on FDM, which is one of the leading additive manufacturing technology for polymers. The information provided in this study helps in continued uptake of the technique, which can help create job opportunities, especially among the youth and young engineers.

Originality/value

This study proposes a new and a more accurate method for optimising process parameters of FDM at meso-scale level.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2024

Hongjun Zeng

We examined the dynamic volatility connectedness and diversification strategies among US real estate investment trusts (REITs) and green finance indices.

Abstract

Purpose

We examined the dynamic volatility connectedness and diversification strategies among US real estate investment trusts (REITs) and green finance indices.

Design/methodology/approach

The DCC-GARCH dynamic connectedness framework and he DCC-GARCH t-copula model were employed in this study.

Findings

Using daily data from 2,206 observations spanning from 2 January 2015 to 31 January 2023 this paper presents the following findings: (1) cross-market spillovers exhibited a high correlation and significant fluctuations, particularly during extreme events; (2) our analysis confirmed that REIT acted as net receivers from other green indices, with the S&P North America Large-MidCap Carbon Efficient Index dominating the in-network volatility spillover; (3) this observation suggests asymmetric spillovers between the two markets and (4) a portfolio analysis was conducted using the DCC-GARCH t-copula framework to estimate hedging ratios and portfolio weights for these indices. When REIT and the Dow Jones US Select ESG REIT Index were simultaneously added to a risk-hedged portfolio, our findings indicated that no risk-hedging effect could be achieved. Moreover, the cost and performance of hedging green assets using REIT were found to be comparable.

Originality/value

We first examined the dynamic volatility connectedness and diversification strategies among US REITs and green finance indices. The outcomes of this study carry practical implications for market participants.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 September 2024

Dongyang Cao, Daniel Bouzolin, Christopher Paniagua, Hongbing Lu and D.Todd Griffith

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced…

Abstract

Purpose

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced by additive manufacturing.

Design/methodology/approach

The authors first identified appropriate printing parameters for joining segmented short beams and then used those parameters to print and fusion-join segments with different configurations of stiffeners to form a longer section of a wing or small wind turbine blade structure.

Findings

It was found that the beams with three lateral and three base stiffening ribs give the highest flexural strength among the three beams investigated. Results on joined beams annealed at different conditions showed that annealing at 70 °C for 0.5 h yields higher performance than annealing at the same temperature for longer times. It is also found that in the case of the hot-plate-welded three-dimensional (3D)-printed structures, no annealing is needed for reaching a high strength-to-weight ratio, but annealing is helpful for maximizing the modulus-to-weight ratio. Both thermal buckling and edge wrapping were observed under annealing at 70°C for 0.5 h for 3D-printed beams comprising two lateral and four base stiffening plates.

Originality/value

Fusion-joining of additively manufactured segments is needed owing to the constraint in building volume of a typical commercial 3D-printer. However, study of the effect of process parameters is needed to quantify their effect on mechanical performance. This investigation has therefore identified key printing parameters and annealing conditions for fusion-joining short segments to form larger structures, from multiple 3D-printed sections, such as wind blade structures.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 July 2024

Jian Shi, Zhenhua Ma, Jieyu Dai and Jundong Wang

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings…

Abstract

Purpose

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings under different temperatures and oxidation times.

Design/methodology/approach

In the high-temperature oxidation test, specimens were oxidized at three different temperatures of 850, 980, and 1,100 °C for durations of 10, 20, 50, 100, 200, and 300 h, respectively. In the gas thermal shock test, specimens were pre-oxidized for 10, 20, 50, and 100 h, followed by a high-temperature gas thermal shock test at 1,100 °C.

Findings

In the high-temperature oxidation tests, with increasing oxidation time, the oxidation layer thickened, and the air-film holes diameter decreased. The microstructure of the bond coat transitioned from strip-like to block-like, and internal cracks transformed from numerous and short to larger and deeper. Below the bond coat, a noticeable disappearance layer of strengthening phase appeared, with increasing thickness. The strengthening phase in the substrate transitioned from regular square shapes to circles as temperature increased. In gas thermal shock tests at 1,100 °C, the oxidation weight gain ratio increased with longer pre-oxidation times, whereas the erosion weight loss ratio gradually decreased.

Originality/value

The originality and significance of this study lie in its departure from the typical subjects of high-temperature oxidation and thermal shock tests. Unlike common research targets, this study focuses on IC10 simulative specimens with thermal barrier coatings and air-film holes. Furthermore, it investigates the effects of varying temperatures and oxidation durations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 January 2024

Dennis Muchuki Kinini, Peter Wang’ombe Kariuki and Kennedy Nyabuto Ocharo

The study seeks to evaluate the effect of capital adequacy and competition on the liquidity creation of Kenyan commercial banks.

Abstract

Purpose

The study seeks to evaluate the effect of capital adequacy and competition on the liquidity creation of Kenyan commercial banks.

Design/methodology/approach

Unbalanced panel data from 36 Kenyan commercial banks with licenses from 2001 to 2020 is used in the study. The generalized method of moments (GMM), a two-step system, is employed in the investigation. To increase the robustness and prevent erroneous findings, serial correlation tests and instrumental validity analyses are used. The methodology developed by Berger and Bouwman (2009) is used to estimate the commercial banks' levels of liquidity creation.

Findings

The study supports the financial fragility-crowding out hypothesis by finding a significant negative effect of capital adequacy on the liquidity creation of commercial banks. The research also identifies a significant inverse relationship between competition and liquidity creation, depicting competition's value-destroying effect.

Practical implications

A trade-off exists between capital adequacy and liquidity creation, which must be carefully evaluated as changes in capital requirements are considered. The value-destroying effect of competition on liquidity creation presents a case for policy geared toward consolidating banks' operations through possible mergers and acquisitions.

Originality/value

To the best of the authors' knowledge, this is the first study to empirically offer evidence concurrently on the effect of competition and capital adequacy on the liquidity creation of commercial banks in a developing economy such as Kenya. Additionally, the authors employ a novel measure of competition at the firm level.

Details

African Journal of Economic and Management Studies, vol. 15 no. 3
Type: Research Article
ISSN: 2040-0705

Keywords

Article
Publication date: 27 September 2024

Elmira Sharabian, Mahyar Khorasani, Stefan Gulizia, Amir Hossein Ghasemi, Eric MacDonald, David Downing, Bernard Rolfe, Milan Brandt and Martin Leary

This study aims to comprehensively investigate the electron beam powder bed fusion (EB-PBF) process for copper, offering validated estimations of melt pool temperature and…

Abstract

Purpose

This study aims to comprehensively investigate the electron beam powder bed fusion (EB-PBF) process for copper, offering validated estimations of melt pool temperature and morphology through numerical and analytical approaches. This work also assesses how process parameters influence the temperature fluctuations and the morphological changes of the melt pool.

Design/methodology/approach

Two distinct methods, an analytical model and a numerical simulation, were used to assess temperature profiles, melt pool morphology and associated heat transfer mechanisms, including conduction and keyhole mode. The analytical model considers conduction as the dominant heat transfer mechanism; the numerical model also includes convection and radiation, incorporating specific parameters such as beam power, scan speed, thermophysical material properties and powder interactions.

Findings

Both the analytical model and numerical simulations are highly correlated. Results indicated that the analytical model, emphasising material conduction, exhibited exceptional precision, although at substantially reduced cost. Statistical analysis of numerical outcomes underscored the substantial impact of beam power and scan speed on melt pool morphology and temperature in EB-PBF of copper.

Originality/value

This numerical simulation of copper in EB-PBF is the first high-fidelity model to consider the interaction between powder and substrate comprehensively. It accurately captures material properties, powder size distribution, thermal dynamics (including heat transfer between powder and substrate), phase changes and fluid dynamics. The model also integrates advanced computational methods such as computational fluid dynamics and discrete element method. The proposed model and simulation offer a valuable predictive tool for melt pool temperature, heat transfer processes and morphology. These insights are critical for ensuring the bonding quality of subsequent layers and, consequently, influencing the overall quality of the printed parts.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2024

Wanxin Li, Fangfang An, Dawu Shu, Zengshuai Lian, Bo Han and Shaolei Cao

This study aims to elucidate the dyeing kinetics and thermodynamic relationships of CI Reactive Red 24 (RR24) on cotton fabrics, achieve the recycling of inorganic salts and water…

Abstract

Purpose

This study aims to elucidate the dyeing kinetics and thermodynamic relationships of CI Reactive Red 24 (RR24) on cotton fabrics, achieve the recycling of inorganic salts and water resources and obtain comprehensive data on color parameters, fastness and other characteristics of fabrics dyed with the recycled dyeing residual wastewater.

Design/methodology/approach

The dyeing wastewater obtained through advanced oxidation technology was used as a medium for dyeing cotton fabrics with RR24. The absorbance value of the dyeing residue served as an evaluation index, and the relevant kinetic and thermodynamic parameters were calculated based on this absorbance. The color parameters and fastness of the fabric samples were measured to compare the performance of different dyeing media.

Findings

Dyeing cotton with RR24 in both media follows pseudo-second-order kinetics. When dyeing with wastewater media, the dye adsorption in the first 45 min increased by 0.082–1.29 g/kg compared with conventional dyeing. Furthermore, the half-dyeing time was shortened by 4.19–11.99 min and the equilibrium adsorption amount was reduced by 0.277–0.302 g/kg. The adsorption of RR24 on cotton fabrics conformed to the Freundlich model. Fabrics dyed using recycled wastewater exhibit a deeper color, with reduced red light and enhanced blue light, resulting in an overall deeper apparent color.

Originality/value

These dyeing kinetics and thermodynamic properties are beneficial for comprehending and interpreting the dyeing performance and behavior of reactive dyes in dyeing wastewater. They lay a theoretical foundation for the treatment and recycling of dyeing wastewater.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 September 2024

Djeffal Mohamed, Merdas Abdelghani and Douara Taha Hocine

Although the reinforcement of concrete and brick masonry with fiber-reinforced polymer (FRP) has been extensively researched, its application and impact on natural stone…

Abstract

Purpose

Although the reinforcement of concrete and brick masonry with fiber-reinforced polymer (FRP) has been extensively researched, its application and impact on natural stone, especially in historic preservation, have received less attention. This study aims to examine the bond-slip characteristics of carbon fiber-reinforced polymer (CFRP) with two types of natural stone masonry, aiming to enhance their effectiveness in reinforcing historic structures. The stones studied include one from the Chouf-Lekdad region (A) and another from a historic structure in Sétif City (B). Both stones were strengthened using CFRP and carbon fiber fabric (CFF) through near-surface mount (NSM) and external bonding (EBR) techniques.

Design/methodology/approach

The interaction was assessed during the pull-out test by analyzing the stress transfer mechanisms, adhesion and deformation. This study also examines the effects of the following parameters on the bond between CFRP and stone: type of stone (A and B), type of reinforcement (plat CFRP and CFF), various notch shapes and sizes (bp, tp and Lb), and reinforcement techniques (NSM and EBR).

Findings

This study demonstrated the practicality and effectiveness of enhancing natural stone masonry of old buildings by integrating NSM and EBR techniques with CFRP. With a bond length of 30 mm, the pull-out force correlates with the strength of the stone. This indicates the importance of stone strength in obtaining better adhesion. The CFF–resin interface is more cohesive than the CFRP plate–resin interface because the resin penetrates the flexible CFF strip, ensuring better adhesion. In contrast, the CFRP plate interface is rigid and smooth. The results suggest that natural stone–CFRP adhesion is more effective than CFRP bonded to concrete and brick masonry due to the stone's strong resistance.

Originality/value

This experimental investigation provides new study into the bond-slip behavior of CFRP-reinforced natural stone masonry, filling the gap in existing research. The findings offer useful direction for creating FRP strengthening solutions that are specifically adapted to the properties of natural stone used in historic constructions. This study helps to improve preservation procedures by guiding the selection of reinforcing techniques, such as NSM versus EBR, and finding ideal bond lengths. This work's novelty stems from its ability to improve the structural integrity of culturally significant buildings while preserving their historical authenticity.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 863