Search results

1 – 10 of 75
Article
Publication date: 8 July 2020

Deniz Ustun, Serdar Carbas and Abdurrahim Toktas

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real…

Abstract

Purpose

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real engineering systems having multiple objectives. Therefore, it is aimed to ensure that the multiple objectives are simultaneously optimized by considering them among the trade-offs. Furthermore, the practical means of solving those problems are principally concentrated on handling various complicated constraints. The purpose of this paper is to suggest an algorithm based on symbiotic organisms search (SOS), which mimics the symbiotic reciprocal influence scheme adopted by organisms to live on and breed within the ecosystem, for constrained multi-objective engineering design problems.

Design/methodology/approach

Though the general performance of SOS algorithm was previously well demonstrated for ordinary single objective optimization problems, its efficacy on multi-objective real engineering problems will be decisive about the performance. The SOS algorithm is, hence, implemented to obtain the optimal solutions of challengingly constrained multi-objective engineering design problems using the Pareto optimality concept.

Findings

Four well-known mixed constrained multi-objective engineering design problems and a real-world complex constrained multilayer dielectric filter design problem are tackled to demonstrate the precision and stability of the multi-objective SOS (MOSOS) algorithm. Also, the comparison of the obtained results with some other well-known metaheuristics illustrates the validity and robustness of the proposed algorithm.

Originality/value

The algorithmic performance of the MOSOS on the challengingly constrained multi-objective multidisciplinary engineering design problems with constraint-handling approach is successfully demonstrated with respect to the obtained outperforming final optimal designs.

Article
Publication date: 15 May 2019

Smita Rath, Binod Kumar Sahu and Manoj Ranjan Nayak

Forecasting of stock indices is a challenging issue because stock data are dynamic, non-linear and uncertain in nature. Selection of an accurate forecasting model is very much…

Abstract

Purpose

Forecasting of stock indices is a challenging issue because stock data are dynamic, non-linear and uncertain in nature. Selection of an accurate forecasting model is very much essential to predict the next-day closing prices of the stock indices. The purpose of this paper is to develop an efficient and accurate forecasting model to predict the next-day closing prices of seven stock indices.

Design/methodology/approach

A novel strategy called quasi-oppositional symbiotic organisms search-based extreme learning machine (QSOS-ELM) is proposed to forecast the next-day closing prices effectively. Accuracy in the prediction of closing price depends on output weights which are dependent on input weights and biases. This paper mainly deals with the optimal design of input weights and biases of the ELM prediction model using QSOS and SOS optimization algorithms.

Findings

Simulation is carried out on seven stock indices, and performance analysis of QSOS-ELM and SOS-ELM prediction models is done by taking various statistical measures such as mean square error, mean absolute percentage error, accuracy and paired sample t-test. Comparative performance analysis reveals that the QSOS-ELM model outperforms the SOS-ELM model in predicting the next-day closing prices more accurately for all the seven stock indices under study.

Originality/value

The QSOS-ELM prediction model and SOS-ELM are developed for the first time to predict the next-day closing prices of various stock indices. The paired t-test is also carried out for the first time in literature to hypothetically prove that there is a zero mean difference between the predicted and actual closing prices.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 30 June 2020

Sajad Ahmad Rather and P. Shanthi Bala

In this paper, a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm (CPSOGSA) has been…

Abstract

Purpose

In this paper, a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm (CPSOGSA) has been employed for training MLP to overcome sensitivity to initialization, premature convergence, and stagnation in local optima problems of MLP.

Design/methodology/approach

In this study, the exploration of the search space is carried out by gravitational search algorithm (GSA) and optimization of candidate solutions, i.e. exploitation is performed by particle swarm optimization (PSO). For training the multi-layer perceptron (MLP), CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error. Secondly, a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.

Findings

The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems. Besides, it gives the best results for breast cancer, heart, sine function and sigmoid function datasets as compared to other participating algorithms. Moreover, CPSOGSA also provides very competitive results for other datasets.

Originality/value

The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP. Basically, CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power. In the research literature, a little work is available where CPSO and GSA have been utilized for training MLP. The only related research paper was given by Mirjalili et al., in 2012. They have used standard PSO and GSA for training simple FNNs. However, the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms. In this paper, eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs. In addition, a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5% significance level to statistically validate the simulation results. Besides, eight state-of-the-art meta-heuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 June 2021

Arash Heidari and Nima Jafari Navimipour

The main goal of this paper is to study the cloud service discovery mechanisms. In this paper, the discovery mechanisms are ranked in three major classes: centralized…

Abstract

Purpose

The main goal of this paper is to study the cloud service discovery mechanisms. In this paper, the discovery mechanisms are ranked in three major classes: centralized, decentralized, and hybrid. Moreover, in this classification, the peer-to-peer (P2P) and agent-based mechanisms are considered the parts of the decentralized mechanism. This paper investigates the main improvements in these three main categories and outlines new challenges. Moreover, the other goals are analyzing the current challenges in a range of problem areas related to cloud discovery mechanisms and summarizing the discussed service discovery techniques.

Design/methodology/approach

Systematic literature review (SLR) is utilized to detect, evaluate and combine findings from related investigations. The SLR consists of two key stages in this paper: question formalization and article selection processes. The latter includes three steps: automated search, article selection and analysis of publication. These investigations solved one or more service discovery research issues and performed a general study of an experimental examination on cloud service discovery challenges.

Findings

In this paper, a parametric comparison of the discovery methods is suggested. It also demonstrates future directions and research opportunities for cloud service discovery. This survey will help researchers understand the advances made in cloud service discovery directly. Furthermore, the performed evaluations have shown that some criteria such as security, robustness and reliability attained low attention in the previous studies. The results also showed that the number of cloud service discovery–related articles rose significantly in 2020.

Research limitations/implications

This research aimed to be comprehensive, but there were some constraints. The limitations that the authors have faced in this article are divided into three parts. Articles in which service discovery was not the primary purpose and their title did not include the related terms to cloud service discovery were also removed. Also, non-English articles and conference papers have not been reviewed. Besides, the local articles have not been considered.

Practical implications

One of the most critical cloud computing topics is finding appropriate services depending on consumer demand in real-world scenarios. Effective discovery, finding and selection of relevant services are necessary to gain the best efficiency. Practitioners can thus readily understand various perspectives relevant to cloud service discovery mechanisms. This paper's findings will also benefit academicians and provide insights into future study areas in this field. Besides, the drawbacks and benefits of the analyzed mechanisms have been analyzed, which causes the development of more efficient and practical mechanisms for service discovery in cloud environments in the future.

Originality/value

This survey will assist academics and practical professionals directly in their understanding of developments in service discovery mechanisms. It is a unique paper investigating the current and important cloud discovery methods based on a logical categorization to the best of the authors’ knowledge.

Details

Kybernetes, vol. 51 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 May 2022

Merlin Sajini M.L., Suja S. and Merlin Gilbert Raj S.

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by…

Abstract

Purpose

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by renewable energy resources to scale back the power loss and to recover the voltage levels. Though several algorithms have already been proposed through the target of power loss reduction and voltage stability enhancement, further optimization of the objectives is improved by using a combination of heuristic algorithms like DE and particle swarm optimization (PSO).

Design/methodology/approach

The identification of the candidate buses for the location of DG units and optimal rating of DG units is found by a combined differential evolution (DE) and PSO algorithm. In the combined strategy of DE and PSO, the key merits of both algorithms are combined. The DE algorithm prevents the individuals from getting trapped into the local optimum, thereby providing efficient global optimization. At the same time, PSO provides a fast convergence rate by providing the best particle among the entire iteration to obtain the best fitness value.

Findings

The proposed DE-PSO takes advantage of the global optimization of DE and the convergence rate of PSO. The different case studies of multiple DG types are carried out for the suggested procedure for the 33- and 69-bus radial delivery frameworks and a real 16-bus distribution substation in Tamil Nadu to show the effectiveness of the proposed methodology and distribution system performance. From the obtained results, there is a substantial decrease in the power loss and an improvement of voltage levels across all the buses of the system, thereby maintaining the distribution system within the framework of system operation and safety constraints.

Originality/value

A comparison of an equivalent system with the DE, PSO algorithm when used separately and other algorithms available in literature shows that the proposed method results in an improved performance in terms of the convergence rate and objective function values. Finally, an economic benefit analysis is performed if a photo-voltaic based DG unit is allocated in the considered test systems.

Content available
Book part
Publication date: 25 April 2022

Abstract

Details

Sustainability Management Strategies and Impact in Developing Countries
Type: Book
ISBN: 978-1-80262-450-2

Article
Publication date: 2 January 2024

Xin Zou and Zhuang Rong

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling…

Abstract

Purpose

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling problem (RCRSP) models assume that there is only one sequence in performing the sub-activities of each activity, resulting in an inefficient resource allocation. This paper proposes a novel repetitive scheduling model for solving RCRSP with soft logic.

Design/methodology/approach

In this paper, a constraint programming model is developed to solve the RCRSP using soft logic, aiming at the possible relationship between parallel execution, orderly execution or partial parallel and partial orderly execution of different sub activities of the same activity in repetitive projects. The proposed model integrated crew assignment strategies and allowed continuous or fragmented execution.

Findings

When solving RCRSP, it is necessary to take soft logic into account. If managers only consider the fixed logic between sub-activities, they are likely to develop a delayed schedule. The practicality and effectiveness of the model were verified by a housing project based on eight different scenarios. The results showed that the constraint programming model outperformed its equivalent mathematical model in terms of solving speed and solution quality.

Originality/value

Available studies assume a fixed logic between sub-activities of the same activity in repetitive projects. However, there is no fixed construction sequence between sub-activities for some projects, e.g. hotel renovation projects. Therefore, this paper considers the soft logic relationship between sub-activities and investigates how to make the objective optimal without violating the resource availability constraint.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 February 2019

Niharika Thakur, Y.K. Awasthi, Manisha Hooda and Anwar Shahzad Siddiqui

Power quality issues highly affect the secure and economic operations of the power system. Although numerous methodologies are reported in the literature, flexible alternating…

Abstract

Purpose

Power quality issues highly affect the secure and economic operations of the power system. Although numerous methodologies are reported in the literature, flexible alternating current transmission system (FACTS) devices play a primary role. However, the FACTS devices require optimal location and sizing to perform the power quality enhancement effectively and in a cost efficient manner. This paper aims to attain the maximum power quality improvements in IEEE 30 and IEEE 57 test bus systems.

Design/methodology/approach

This paper contributes the adaptive whale optimization algorithm (AWOA) algorithm to solve the power quality issues under deregulated sector, which enhances available transfer capability, maintains voltage stability, minimizes loss and mitigates congestions.

Findings

Through the performance analysis, the convergence of the final fitness of AWOA algorithm is 5 per cent better than artificial bee colony (ABC), 3.79 per cent better than genetic algorithm (GA), 2,081 per cent better than particle swarm optimization (PSO) and fire fly (FF) and 2.56 per cent better than whale optimization algorithm (WOA) algorithms at 400 per cent load condition for IEEE 30 test bus system, and the fitness convergence of AWOA algorithm for IEEE 57 test bus system is 4.44, 4.86, 5.49, 7.52 and 9.66 per cent better than FF, ABC, WOA, PSO and GA, respectively.

Originality/value

This paper presents a technique for minimizing the power quality problems using AWOA algorithm. This is the first work to use WOA-based optimization for the power quality improvements.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 April 2018

Marina Tsili, Eleftherios I. Amoiralis, Jean Vianei Leite, Sinvaldo R. Moreno and Leandro dos Santos Coelho

Real-world applications in engineering and other fields usually involve simultaneous optimization of multiple objectives, which are generally non-commensurable and conflicting…

Abstract

Purpose

Real-world applications in engineering and other fields usually involve simultaneous optimization of multiple objectives, which are generally non-commensurable and conflicting with each other. This paper aims to treat the transformer design optimization (TDO) as a multiobjective problem (MOP), to minimize the manufacturing cost and the total owing cost, taking into consideration design constraints.

Design/methodology/approach

To deal with this optimization problem, a new method is proposed that combines the unrestricted population-size evolutionary multiobjective optimization algorithm (UPS-EMOA) with differential evolution, also applying lognormal distribution for tuning the scale factor and the beta distribution to adjust the crossover rate (UPS-DELFBC). The proposed UPS-DELFBC is useful to maintain the adequate diversity in the population and avoid the premature convergence during the generational cycle. Numerical results using UPS-DELFBC applied to the transform design optimization of 160, 400 and 630 kVA are promising in terms of spacing and convergence criteria.

Findings

Numerical results using UPS-DELFBC applied to the transform design optimization of 160, 400 and 630 kVA are promising in terms of spacing and convergence criteria.

Originality/value

This paper develops a promising UPS-DELFBC approach to solve MOPs. The TDO problems for three different transformer specifications, with 160, 400 and 630 kVA, have been addressed in this paper. Optimization results show the potential and efficiency of the UPS-DELFBC to solve multiobjective TDO and to produce multiple Pareto solutions.

Article
Publication date: 30 April 2020

Mehdi Darbandi, Amir Reza Ramtin and Omid Khold Sharafi

A set of routers that are connected over communication channels can from network-on-chip (NoC). High performance, scalability, modularity and the ability to parallel the structure…

Abstract

Purpose

A set of routers that are connected over communication channels can from network-on-chip (NoC). High performance, scalability, modularity and the ability to parallel the structure of the communications are some of its advantages. Because of the growing number of cores of NoC, their arrangement has got more valuable. The mapping action is done based on assigning different functional units to different nodes on the NoC, and the way it is done contains a significant effect on implementation and network power utilization. The NoC mapping issue is one of the NP-hard problems. Therefore, for achieving optimal or near-optimal answers, meta-heuristic algorithms are the perfect choices. The purpose of this paper is to design a novel procedure for mapping process cores for reducing communication delays and cost parameters. A multi-objective particle swarm optimization algorithm standing on crowding distance (MOPSO-CD) has been used for this purpose.

Design/methodology/approach

In the proposed approach, in which the two-dimensional mesh topology has been used as base construction, the mapping operation is divided into two stages as follows: allocating the tasks to suitable cores of intellectual property; and plotting the map of these cores in a specific tile on the platform of NoC.

Findings

The proposed method has dramatically improved the related problems and limitations of meta-heuristic algorithms. This algorithm performs better than the particle swarm optimization (PSO) and genetic algorithm in convergence to the Pareto, producing a proficiently divided collection of solving ways and the computational time. The results of the simulation also show that the delay parameter of the proposed method is 1.1 per cent better than the genetic algorithm and 0.5 per cent better than the PSO algorithm. Also, in the communication cost parameter, the proposed method has 2.7 per cent better action than a genetic algorithm and 0.16 per cent better action than the PSO algorithm.

Originality/value

As yet, the MOPSO-CD algorithm has not been used for solving the task mapping issue in the NoC.

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 75