Search results

1 – 10 of over 7000
Article
Publication date: 2 March 2012

Johye Hwang, So‐Yeon Yoon and Lawrence J. Bendle

Recognizing that crowding in a restaurant waiting area forms a first impression of service and sets service expectations, the purpose of this study is to investigate the impact of…

5014

Abstract

Purpose

Recognizing that crowding in a restaurant waiting area forms a first impression of service and sets service expectations, the purpose of this study is to investigate the impact of crowding in the effective control of the waiting environment. The study seeks to examine the impact of crowding on customers' emotions and approach‐avoidance responses and to examine the mediating role of emotion and the moderating role of desired privacy in the relationship between crowding and approach‐avoidance responses.

Design/methodology/approach

Using real‐scale, interactive virtual reality (VR) technology that allows high‐fidelity representations of real environments, the authors created a navigable, photo‐realistic three‐dimensional model of a restaurant waiting area. Through an experimental study which manipulated crowding levels in the VR restaurant, they surveyed the subjects' responses toward crowding conditions.

Findings

The study found significant effects of crowding on emotions including arousal and dominance, but not pleasure, and on approach‐avoidance responses. The impact of crowding on approach‐avoidance responses was more direct than indirect, without having emotion as a mediator. It was also found that the desire for privacy as a psychological trait moderated the relationship between crowding and affiliation.

Practical implications

The findings of this study offer restaurant managers insights toward the effective management of the pre‐process service environment during the waiting state that minimizes the negative consequences of waiting/crowding. This study provides three courses of management actions that can make unavoidable crowding in the restaurant waiting situation more enjoyable and comfortable.

Originality/value

By using VR simulation, this study adds a new approach for crowding studies. Theoretically, this study broadened the scope of crowding studies by adding a potential mediating variable, emotions, and a moderating variable, desired privacy, in examining the relationship between crowding and approach‐avoidance responses. Also, by focusing on a restaurant waiting area, the authors were able to explore the pre‐process service expectations.

Details

International Journal of Contemporary Hospitality Management, vol. 24 no. 2
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 11 November 2013

Giovanni Petrone, John Axerio-Cilies, Domenico Quagliarella and Gianluca Iaccarino

A probabilistic non-dominated sorting genetic algorithm (P-NSGA) for multi-objective optimization under uncertainty is presented. The purpose of this algorithm is to create a…

Abstract

Purpose

A probabilistic non-dominated sorting genetic algorithm (P-NSGA) for multi-objective optimization under uncertainty is presented. The purpose of this algorithm is to create a tight coupling between the optimization and uncertainty procedures, use all of the possible probabilistic information to drive the optimizer, and leverage high-performance parallel computing.

Design/methodology/approach

This algorithm is a generalization of a classical genetic algorithm for multi-objective optimization (NSGA-II) by Deb et al. The proposed algorithm relies on the use of all possible information in the probabilistic domain summarized by the cumulative distribution functions (CDFs) of the objective functions. Several analytic test functions are used to benchmark this algorithm, but only the results of the Fonseca-Fleming test function are shown. An industrial application is presented to show that P-NSGA can be used for multi-objective shape optimization of a Formula 1 tire brake duct, taking into account the geometrical uncertainties associated with the rotating rubber tire and uncertain inflow conditions.

Findings

This algorithm is shown to have deterministic consistency (i.e. it turns back to the original NSGA-II) when the objective functions are deterministic. When the quality of the CDF is increased (either using more points or higher fidelity resolution), the convergence behavior improves. Since all the information regarding uncertainty quantification is preserved, all the different types of Pareto fronts that exist in the probabilistic framework (e.g. mean value Pareto, mean value penalty Pareto, etc.) are shown to be generated a posteriori. An adaptive sampling approach and parallel computing (in both the uncertainty and optimization algorithms) are shown to have several fold speed-up in selecting optimal solutions under uncertainty.

Originality/value

There are no existing algorithms that use the full probabilistic distribution to guide the optimizer. The method presented herein bases its sorting on real function evaluations, not merely measures (i.e. mean of the probabilistic distribution) that potentially do not exist.

Details

Engineering Computations, vol. 30 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 June 2024

Yaser Sadati-Keneti, Mohammad Vahid Sebt, Reza Tavakkoli-Moghaddam, Armand Baboli and Misagh Rahbari

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating…

Abstract

Purpose

Although the previous generations of the Industrial Revolution have brought many advantages to human life, scientists have been looking for a substantial breakthrough in creating technologies that can improve the quality of human life. Nowadays, we can make our factories smarter using new concepts and tools like real-time self-optimization. This study aims to take a step towards implementing key features of smart manufacturing including  preventive self-maintenance, self-scheduling and real-time decision-making.

Design/methodology/approach

A new bi-objective mathematical model based on Industry 4.0 to schedule received customer orders, which minimizes both the total earliness and tardiness of orders and the probability of machine failure in smart manufacturing, was presented. Moreover, four meta-heuristics, namely, the multi-objective Archimedes optimization algorithm (MOAOA), NSGA-III, multi-objective simulated annealing (MOSA) and hybrid multi-objective Archimedes optimization algorithm and non-dominated sorting genetic algorithm-III (HMOAOANSGA-III) were implemented to solve the problem. To compare the performance of meta-heuristics, some examples and metrics were presumed and solved by using the algorithms, and the performance and validation of meta-heuristics were analyzed.

Findings

The results of the procedure and a mathematical model based on Industry 4.0 policies showed that a machine performed the self-optimizing process of production scheduling and followed a preventive self-maintenance policy in real-time situations. The results of TOPSIS showed that the performances of the HMOAOANSGA-III were better in most problems. Moreover, the performance of the MOSA outweighed the performance of the MOAOA, NSGA-III and HMOAOANSGA-III if we only considered the computational times of algorithms. However, the convergence of solutions associated with the MOAOA and HMOAOANSGA-III was better than those of the NSGA-III and MOSA.

Originality/value

In this study, a scheduling model considering a kind of Industry 4.0 policy was defined, and a novel approach was presented, thereby performing the preventive self-maintenance and self-scheduling by every single machine. This new approach was introduced to integrate the order scheduling system using a real-time decision-making method. A new multi-objective meta-heuristic algorithm, namely, HMOAOANSGA-III, was proposed. Moreover, the crowding-distance-quality-based approach was presented to identify the best solution from the frontier, and in addition to improving the crowding-distance approach, the quality of the solutions was also considered.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 August 2018

Luis Martí, Eduardo Segredo, Nayat Sánchez-Pi and Emma Hart

One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms, is the selection mechanism. It is responsible for performing two main tasks…

Abstract

Purpose

One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms, is the selection mechanism. It is responsible for performing two main tasks simultaneously. First, it has to promote convergence by selecting solutions which are as close as possible to the Pareto optimal set. And second, it has to promote diversity in the solution set provided. In the current work, an exhaustive study that involves the comparison of several selection mechanisms with different features is performed. Particularly, Pareto-based and indicator-based selection schemes, which belong to well-known multi-objective optimisers, are considered. The paper aims to discuss these issues.

Design/methodology/approach

Each of those mechanisms is incorporated into a common multi-objective evolutionary algorithm framework. The main goal of the study is to measure the diversity preserved by each of those selection methods when addressing many-objective optimisation problems. The Walking Fish Group test suite, a set of optimisation problems with a scalable number of objective functions, is taken into account to perform the experimental evaluation.

Findings

The computational results highlight that the the reference-point-based selection scheme of the Non-dominated Sorting Genetic Algorithm III and a modified version of the Non-dominated Sorting Genetic Algorithm II, where the crowding distance is replaced by the Euclidean distance, are able to provide the best performance, not only in terms of diversity preservation, but also in terms of convergence.

Originality/value

The performance provided by the use of the Euclidean distance as part of the selection scheme indicates this is a promising line of research and, to the best of the knowledge, it has not been investigated yet.

Article
Publication date: 13 November 2009

Wenhui Fan, Huayu Xu and Xin Xu

The purpose of this paper is to formulate and simulate the model for vehicle routing problem (VRP) on a practical application in logistics distribution.

4532

Abstract

Purpose

The purpose of this paper is to formulate and simulate the model for vehicle routing problem (VRP) on a practical application in logistics distribution.

Design/methodology/approach

Based on the real data of a distribution center in Utica, Michigan, USA, the design of VRP is modeled as a multi‐objective optimization problem which considers three objectives. The non‐dominated sorting genetic algorithm II (NSGA‐II) is adopted to solve this multi‐objective problem. On the other hand, the VRP model is simulated and an object‐oriented idea is employed to analyze the classes, functions, and attributes of all involved objects on VRP. A modularized objectification model is established on AnyLogic software, which can simulate the practical distribution process by changing parameters dynamically and randomly. The simulation model automatically controls vehicles motion by programs, and has strong expansibility. Meanwhile, the model credibility is strengthened by introducing random traffic flow to simulate practical traffic conditions.

Findings

The computational results show that the NSGA‐II algorithm is effective in solving this practical problem. Moreover, the simulation results suggest that by analyzing and controlling specific key factors of VRP, the distribution center can get useful information for vehicle scheduling and routing.

Originality/value

Multi‐objective problems are seldom considered on VRPs, yet they are of great practical value in logistics distribution. This paper is mainly focused on multi‐objective VRP which is derived from a practical distribution center. The NSGA‐II algorithm is applied in this problem and the AnyLogic software is employed as the simulation tool. In addition, this paper deals with several key factors of VRP in order to control and simulate the distribution process. The computational and simulation results regarding VRPs constitute the main contribution of our paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 February 2018

Mahsa Pouraliakbarimamaghani, Mohammad Mohammadi and Abolfazl Mirzazadeh

When designing an optimization model for use in a mass casualty event response, it is common to encounter the heavy and considerable demand of injured patients and inadequate…

Abstract

Purpose

When designing an optimization model for use in a mass casualty event response, it is common to encounter the heavy and considerable demand of injured patients and inadequate resources and personnel to provide patients with care. The purpose of this study is to create a model that is more practical in the real world. So the concept of “predicting the resource and personnel shortages” has been used in this research. Their model helps to predict the resource and personnel shortages during a mass casualty event. In this paper, to deal with the shortages, some temporary emergency operation centers near the hospitals have been created, and extra patients have been allocated to the operation center nearest to the hospitals with the purpose of improving the performance of the hospitals, reducing congestion in the hospitals and considering the welfare of the applicants.

Design/methodology/approach

The authors research will focus on where to locate health-care facilities and how to allocate the patients to multiple hospitals to take into view that in some cases of emergency situations, the patients may exceed the resource and personnel capacity of hospitals to provide conventional standards of care.

Findings

In view of the fact that the problem is high degree of complexity, two multi-objective meta-heuristic algorithms, including non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA), were proposed to solve the model where their performances were compared in terms of four multi-objective metrics including maximum spread index (MSI), spacing (S), number of Pareto solution (NPS) and CPU run-time values. For comparison purpose, paired t-test was used. The results of 15 numerical examples showed that there is no significant difference based on MSI, S and NPS metrics, and NRGA significantly works better than NSGA-II in terms of CPU time, and the technique for the order of preference by similarity to ideal solution results showed that NRGA is a better procedure than NSGA-II.

Research limitations/implications

The planning horizon and time variable have not been considered in the model, for example, the length of patients’ hospitalization at hospitals.

Practical implications

Presenting an effective strategy to respond to a mass casualty event (natural and man-made) is the main goal of the authors’ research.

Social implications

This paper strategy is used in all of the health-care centers, such as hospitals, clinics and emergency centers when dealing with disasters and encountering with the heavy and considerable demands of injured patients and inadequate resources and personnel to provide patients with care.

Originality/value

This paper attempts to shed light onto the formulation and the solution of a three-objective optimization model. The first part of the objective function attempts to maximize the covered population of injured patients, the second objective minimizes the distance between hospitals and temporary emergency operation centers and the third objective minimizes the distance between the warehouses and temporary centers.

Details

Journal of Modelling in Management, vol. 13 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 11 June 2019

He-Nan Bu, Hong-Gen Zhou, Zhu-Wen Yan and Dian-Hua Zhang

In the process of cold rolled strip, there is tight coupling between flatness control and gauge control. The variation of the roll gap caused by the change of bending force will…

Abstract

Purpose

In the process of cold rolled strip, there is tight coupling between flatness control and gauge control. The variation of the roll gap caused by the change of bending force will lead to the change of rolling force. Furthermore, it can cause a deep impact on the control accuracy of strip exit thickness and exit crown. The purpose of this paper is to improve the accuracy of the bending force preset value for cold rolled strip.

Design/methodology/approach

In this paper, the bending force preset control strategy with considering of rolling force was proposed for the first time and the preset objective function of bending force was established on the basis of the two-objective optimization of bending force and rolling force. Meanwhile, the multi-objective intelligent algorithm – INSGA-II – was used to solve the objective function.

Findings

The proposed bending force multi-objective preset model has been tested in a 1,450 mm tandem cold rolling line. The analyzed results of field data show that the deviations of strip exit thickness and exit crown are reduced effectively by using the improved model, and at the same time, more reasonable bending force preset values are obtained, which can enhance the accuracy of flatness preset control.

Originality/value

A preset model of bending force with considering flatness and gauge is proposed in this paper and the multi-objective function of bending force preset is established on the basis of the two-objective optimization of bending force and rolling force. The value lies in proposing a new decoupling method of rolling force and bending force.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 June 2019

Binghai Zhou and Qiong Wu

The extensive applications of the industrial robots have made the optimization of assembly lines more complicated. The purpose of this paper is to develop a balancing method of…

Abstract

Purpose

The extensive applications of the industrial robots have made the optimization of assembly lines more complicated. The purpose of this paper is to develop a balancing method of both workstation time and station area to improve the efficiency and productivity of the robotic assembly lines. A tradeoff was made between two conflicting objective functions, minimizing the number of workstations and minimizing the area of each workstation.

Design/methodology/approach

This research proposes an optimal method for balancing robotic assembly lines with space consideration and reducing robot changeover and area for tools and fixtures to further minimize assembly line area and cycle time. Due to the NP-hard nature of the considered problem, an improved multi-objective immune clonal selection algorithm is proposed to solve this constrained multi-objective optimization problem, and a special coding scheme is designed for the problem. To enhance the performance of the algorithm, several strategies including elite strategy and global search are introduced.

Findings

A set of instances of different problem scales are optimized and the results are compared with two other high-performing multi-objective algorithms to evaluate the efficiency and superiority of the proposed algorithm. It is found that the proposed method can efficiently solve the real-world size case of time and space robotic assembly line balancing problems.

Originality/value

For the first time in the robotic assembly line balancing problems, an assignment-based tool area and a sequence-based changeover time are took into consideration. Furthermore, a mathematical model with bi-objective functions of minimizing the number of workstations and area of each station was developed. To solve the proposed problem, an improved multi-objective immune clonal selection algorithm was proposed and a special coding scheme is designed.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 May 2014

Feng Liu, Jian-Jun Wang, Haozhe Chen and De-Li Yang

The purpose of this paper is to study the use of outsourcing as a mechanism to cope with supply chain uncertainty, more specifically, how to deal with sudden arrival of higher…

Abstract

Purpose

The purpose of this paper is to study the use of outsourcing as a mechanism to cope with supply chain uncertainty, more specifically, how to deal with sudden arrival of higher priority jobs that require immediate processing, in an in-house manufacturer's facility from the perspective of outsourcing. An operational level schedule of production and distribution of outsourced jobs to the manufacturer's facility should be determined for the subcontractor in order to achieve overall optimality.

Design/methodology/approach

The problem is of bi-criteria in that both the transportation cost measured by number of delivery vehicles and schedule performance measured by jobs’ delivery times. In order to obtain the problem's Pareto front, we propose dynamic programming (DP) heuristic solution procedure based on integrated decision making, and population-heuristic solution procedures using different encoding schemes based on sequential decision making. Computational studies are designed and carried out by randomly generating comparative variations of numerical problem instances.

Findings

By comparing several existing performance metrics for the obtained Pareto fronts, it is found that DP heuristic outperforms population-heuristic in both solutions diversity and proximity to optimal Pareto front. Also in population-heuristic, sub-range keys representation appears to be a better encoding scheme for the problem than random keys representation.

Originality/value

This study contributes to the limited yet important knowledge body on using outsourcing approach to coping with possible supply chain disruptions in production scheduling due to sudden customer orders. More specifically, we used modeling methodology to confirm the importance of collaboration with subcontractors to effective supply chain risk management.

Details

The International Journal of Logistics Management, vol. 25 no. 1
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 9 June 2023

Binghai Zhou and Yufan Huang

The purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic…

Abstract

Purpose

The purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic kitting system with the application of electric vehicles (EVs) is introduced. The system resorts to just-in-time (JIT) and segmented sub-line assignment strategies, with the objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

Hybrid opposition-based learning and variable neighborhood search (HOVMQPSO), a multi-objective meta-heuristics algorithm based on quantum particle swarm optimization is proposed, which hybridizes opposition-based learning methodology as well as a variable neighborhood search mechanism. Such algorithm extends the search space and is capable of obtaining more high-quality solutions.

Findings

Computational experiments demonstrated the outstanding performance of HOVQMPSO in solving the proposed part-feeding problem over the two benchmark algorithms non-dominated sorting genetic algorithm-II and quantum-behaved multi-objective particle swarm optimization. Additionally, using modified real-life assembly data, case studies are carried out, which imply HOVQMPSO of having good stability and great competitiveness in scheduling problems.

Research limitations/implications

The feeding problem is based on static settings in a stable manufacturing system with determined material requirements, without considering the occurrence of uncertain incidents. Current study contributes to assembly line feeding with EV assignment and could be modified to allow cooperation between EVs.

Originality/value

The dynamic cyclic kitting problem with sub-line assignment applying EVs and supermarkets is solved by an innovative HOVMQPSO, providing both novel part-feeding strategy and effective intelligent algorithm for industrial engineering.

1 – 10 of over 7000