Search results

1 – 10 of over 134000
Article
Publication date: 20 April 2020

Ananthan Nagarajan, Sivachandran P., Suganyadevi M.V. and Muthukumar P.

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Abstract

Purpose

The purpose of this study is to help the researchers, public, industries and government to realize the tremendous trends to improve the power quality of both sources and load side.

Design/methodology/approach

The work carried out in the Facts device and power quality issues.

Findings

Maintaining the quality of electric power is always a challenging task. The effect of power electronics devices leads to improper power quality. The use of FACTS devices is preferably the best approach to treat power-quality-related problems. Usually, all FACTS devices are constructed to operate on the side of either the source side or the load.

Originality/value

This paper explores a broad comprehensive study of various types of power quality problems and classification of FACTS devices with its recent developments. Furthermore unified power quality conditioner (UPQC) is particularly reviewed to highlight the advantages over other compensating devices. An exhaustive study of literature has been carried out and most significant concepts are presented

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 February 2019

Niharika Thakur, Y.K. Awasthi, Manisha Hooda and Anwar Shahzad Siddiqui

Power quality issues highly affect the secure and economic operations of the power system. Although numerous methodologies are reported in the literature, flexible alternating…

Abstract

Purpose

Power quality issues highly affect the secure and economic operations of the power system. Although numerous methodologies are reported in the literature, flexible alternating current transmission system (FACTS) devices play a primary role. However, the FACTS devices require optimal location and sizing to perform the power quality enhancement effectively and in a cost efficient manner. This paper aims to attain the maximum power quality improvements in IEEE 30 and IEEE 57 test bus systems.

Design/methodology/approach

This paper contributes the adaptive whale optimization algorithm (AWOA) algorithm to solve the power quality issues under deregulated sector, which enhances available transfer capability, maintains voltage stability, minimizes loss and mitigates congestions.

Findings

Through the performance analysis, the convergence of the final fitness of AWOA algorithm is 5 per cent better than artificial bee colony (ABC), 3.79 per cent better than genetic algorithm (GA), 2,081 per cent better than particle swarm optimization (PSO) and fire fly (FF) and 2.56 per cent better than whale optimization algorithm (WOA) algorithms at 400 per cent load condition for IEEE 30 test bus system, and the fitness convergence of AWOA algorithm for IEEE 57 test bus system is 4.44, 4.86, 5.49, 7.52 and 9.66 per cent better than FF, ABC, WOA, PSO and GA, respectively.

Originality/value

This paper presents a technique for minimizing the power quality problems using AWOA algorithm. This is the first work to use WOA-based optimization for the power quality improvements.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 February 2007

Antonio Moreno‐Muñoz, Mª Dolores Redel, Daniel Oterino and Juan J.G. De la Rosa

The purpose of this paper is to address the issue of power quality through a case study in an IT‐intensive modern office building.

Abstract

Purpose

The purpose of this paper is to address the issue of power quality through a case study in an IT‐intensive modern office building.

Design/methodology/approach

This paper presents results from a power quality audit conducted last year. Firstly, the power site inspection included: (a) a walk‐down of the facility's electrical system to inspect the condition of equipment and becoming familiar with the electrical system; (b) interviewing facility electrical personnel and end‐users on failure of equipment; (c) identifying and collecting the electronic equipment that is most sensitive to power disturbances; (d) requesting and reviewing equipment literature and electromagnetic compatibility characteristics; (e) after that, in the power quality monitoring, voltage and current were measured at various floors.

Findings

It was found that the main problems for the equipment installed were harmonics and leakage currents. The paper examines the causes and effects of power disturbances that affect computer or any other microprocessor based equipment and analyses the disadvantages of modern power supplies.

Practical implications

This provides useful information for facilities managers on the current state of power disturbances. The convenience of “enhanced power supply” is also discussed. Finally, it is addressed the role of standards on the protection of IT and the implications for the final costumer.

Originality/value

This paper has provided empirical data from a power site survey developed in a high tech building. This case study demonstrates the impacts of generalized electronic devices on the power quality of the buildings and the implications on energy uses.

Details

Facilities, vol. 25 no. 1/2
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 20 June 2020

Fossy Mary Chacko, Ginu Ann George, Jayan M.V. and Prince A.

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid…

Abstract

Purpose

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid integrated photovoltaic (GIPV) systems.

Design/methodology/approach

The paper proposes a dual stage, three phase, multifunctional GIPV system with modified instantaneous reactive power (IRP) theory-based and modified synchronous reference frame (SRF) theory-based control algorithms for reference template generation with continuous load power requirement tracking. The control structure is designed so as to impart virtual distribution static compensator functionality to the photovoltaic inverter. The dual mode operation in active filter and renewable power injection modes provides enhanced capability to the GIPV system. A comprehensive evaluation of the dynamic behaviour of the GIPV system is carried out for various conditions of irradiance and load under MATLAB/Simulink platform. The performance comparison is done considering an uncompensated system and the GIPV system with both proposed control algorithms.

Findings

The extensive simulation results demonstrate that the proposed modified SRF theory-based multifunctional control strategy shows superior performance in real and reactive power flow control; reduction in real and reactive burden of the utility grid; and regulation of dc bus voltage under varying scenarios of irradiance and load. Furthermore, there is improvement of grid power factor and reduction in total harmonic distortion of grid currents in compliance with the IEEE 519 standard even with highly non-linear loads at the point of common coupling.

Originality/value

The proposed modified SRF theory-based multifunctional controller offers a viable solution for power quality enhancement as well as the realization of effective real and reactive power flow control in GIPV systems. Thus, the penetration level of distributed generation can be increased in this era of global energy crisis.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 June 2022

Chinnaraj Gnanavel and Kumarasamy Vanchinathan

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and…

Abstract

Purpose

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and control schemes for multilevel inverter (MLI) topologies. Reduced harmonic modulation technology is used to produce 11-level output voltage with the production of renewable energy applications. The simulation is done in the MATLAB/Simulink for 11-level symmetric MLI and is correlated with the conventional inverter design.

Design/methodology/approach

This paper is focused on investigating the different types of asymmetric, symmetric and hybrid topologies and control methods used for the modular multilevel inverter (MMI) operation. Classical MLI configurations are affected by performance issues such as poor power quality, uneconomic structure and low efficiency.

Findings

The variations in both carrier and reference signals and their performance are analyzed for the proposed inverter topologies. The simulation result compares unipolar and bipolar pulse-width modulation (PWM) techniques with total harmonic distortion (THD) results. The solar-fed 11-level MMI is controlled using various modulation strategies, which are connected to marine emergency lighting loads. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by using SPARTAN 3A field programmable gate array (FPGA) board and the least harmonics are obtained by improving the power quality.

Originality/value

The simulation result compares unipolar and bipolar PWM techniques with THD results. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by a SPARTAN 3A field programmable gate array (FPGA) board, and the power quality is improved to achieve the lowest harmonics possible.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 June 2022

Vasantharaj Subramanian and Indragandhi Vairavasundaram

The purpose of this study is to eliminate voltage harmonics and instantly measure the positive sequence fundamental voltage during unbalanced grid conditions, the dual…

Abstract

Purpose

The purpose of this study is to eliminate voltage harmonics and instantly measure the positive sequence fundamental voltage during unbalanced grid conditions, the dual second-order generalized integrator-phase locked loop used in series hybrid filter structures is often used in grid synchronisation in three-phase networks. The preferred series active hybrid power filter simultaneously compensates for voltage balancing and current harmonics generated by non-linear loads.

Design/methodology/approach

This paper examines the use of renewable energy–based microgrid (MG) to support linear and non-linear loads. It is capable of synchronising with both the utility and the diesel generator unit. Power is transferred from the grid throughout a stable grid situation with minimum renewable energy generation and maximum load demand. It synchronises with diesel generator set to supply the load and form an AC MG during outages and minimum renewable power generation. In islanded and grid-connected mode, the voltage and power quality issues of the MG are controlled by static synchronous compensator and series hybrid filter.

Findings

Because of the presence of non-linear loads, reactive loads in the distribution system and the injection of wind power into the grid integrated system result power quality issues like current harmonics, voltage fluctuations, reactive power demand, etc.

Originality/value

The voltage at the load (linear and non-linear) is regulated, and the power factor and total harmonic distortions were improved with the help of the series hybrid filter.

Article
Publication date: 12 February 2020

Kaladhar Gaddala and P. Sangameswara Raju

In general, the optimal reactive power compensation could drastically enhance the performance of distributed network by the reduction of power loss and by enhancement of line…

Abstract

Purpose

In general, the optimal reactive power compensation could drastically enhance the performance of distributed network by the reduction of power loss and by enhancement of line loadability and voltage profile. Till now, there exist various reactive power compensation models including capacitor placement, joined process of on-load tap changer and capacitor banks and integration of DG. Further, one of the current method is the allocation of distribution FACTS (DFACTS) device. Even though, the DFACTS devices are usually used in the enhancement of power quality, they could be used in the optimal reactive power compensation with more effectiveness.

Design/methodology/approach

This paper introduces a power quality enhancement model that is based on a new hybrid optimization algorithm for selecting the precise unified power quality conditioner (UPQC) location and sizing. A new algorithm rider optimization algorithm (ROA)-modified particle swarm optimization (PSO) in fitness basis (RMPF) is introduced for this optimal selections.

Findings

Through the performance analysis, it is observed that as the iteration increases, there is a gradual minimization of cost function. At the 40th iteration, the proposed method is 1.99 per cent better than ROA and genetic algorithm (GA); 0.09 per cent better than GMDA and WOA; and 0.14, 0.57 and 1.94 per cent better than Dragonfly algorithm (DA), worst solution linked whale optimization (WS-WU) and PSO, respectively. At the 60th iteration, the proposed method attains less cost function, which is 2.07, 0.08, 0.06, 0.09, 0.07 and 1.90 per cent superior to ROA, GMDA, DA, GA, WS-WU and PSO, respectively. Thus, the proposed model proves that it is better than other models.

Originality/value

This paper presents a technique for optimal placing and sizing of UPQC. To the best of the authors’ knowledge, this is the first work that introduces RMPF algorithm to solve the optimization problems.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 August 2022

Biranchi Narayan Kar, Paulson Samuel, Jatin Kumar Pradhan and Amit Mallick

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a…

Abstract

Purpose

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a grid-connected solar photovoltaic-fed brushless DC motor (BLDC)-driven water pumping system with a bidirectional power flow control. The system with bidirectional power flow allows driving the pump at full proportions uninterruptedly irrespective of the weather conditions and feeding a grid when water pumping is not required.

Design/methodology/approach

Here, power quality issue is taken care of by the optimal generation of the duty cycle of the voltage source converter. The duty cycle is optimally generated by optimal selection of the gains of the current controller (i.e. PI), with the CBO technique resulting in a nearly unity power factor as well as lower total harmonic distortion (THD) of input current. In the CBO technique, the gains of the PI controller are considered as agents and collide with each other to obtain the best value. The system is simulated using MATLAB/Simulink and validated in real time with OPAL RT simulator, OP5700.

Findings

It was found that the power quality of grid using the CBO technique has improved much better than the particle swarm optimization and Zeigler–Nichols approach. The bidirectional flow of control of VSC allowed for optimum resource utilization and full capacity of water pumping whatever may be weather conditions.

Originality/value

Improved power quality of grid by optimally generation of the duty cycle for the proposed system. A unit vector tamplate generation technique is used for bidirectional power transfer.

Article
Publication date: 9 November 2020

Md Ehtesham and Majid Jamil

The purpose of this paper is to focus on two major areas of concern for the Photovoltaic (PV) system, i.e. power quality and maximum power point tracking (MPPT). Novel control…

Abstract

Purpose

The purpose of this paper is to focus on two major areas of concern for the Photovoltaic (PV) system, i.e. power quality and maximum power point tracking (MPPT). Novel control strategies have been proposed for both these issues, and their respective superiorities over the existing techniques have been established. On the other hand, as far as MPPT is concerned, two limitations are found in the available techniques. One is the inability of effective MPPT in dynamic conditions where the environmental parameters changes very rapidly. Second one is the ineffective tracking of global maxima under partial shading conditions.

Design/methodology/approach

Here, modified Kalman filtering approach has been applied for estimating the reference current of active power filter, incorporated for power quality improvement. The proposed Kalman algorithm introduces a weighted matrix, which advances the estimated values of state variables. This paper presents a simple and enhanced model-based (MB) MPPT algorithm that has the capability of tracking MPPT effectively in both these working conditions. The proposed MB algorithm uses the mathematical modelling, and based on precised estimation of parameters, it pre-determines the MPP analytically.

Findings

It has been tested successfully for dynamic variations of insolation, temperature and partial shading, where all these three parameters are rigorously varied over the full scale of practical values. The results have been also investigated experimentally and compared with the simulated one. A close matching of both the results has been shown through the plots, which validates the effectiveness of proposed algorithms.

Originality/value

This research paper is part of the original research work carried out in Lab. Simulated results are obtained in MATLAB/Simulink platform, whereas these are further validated experimentally on 2-KW panel constituted with all types of commercial products, namely, mono, poly and thin-film.

Details

International Journal of Energy Sector Management, vol. 15 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 30 June 2020

Byomakesh Dash, Renu Sharma and Bidyadhar Subudhi

A cascaded observer-based transfer delay frequency locked loop (CODFLL) algorithm is developed to control the distribution static compensator (DSTATCOM) to address various power

Abstract

Purpose

A cascaded observer-based transfer delay frequency locked loop (CODFLL) algorithm is developed to control the distribution static compensator (DSTATCOM) to address various power quality (PQ) issues arise because of distorted grid and load conditions. Moreover, frequency locked loop is included along with the observer to take care of the frequency drift from nominal value and to improve its performance during steady state and transient conditions. During daylight, the proposed system works as photovoltaic (PV) DSTATCOM and performs multiple functions for improving PQ whilst transferring power to grid and load. The system under consideration acts as DSTATCOM during night and bad weather condition to nullify the PQ issues.

Design/methodology/approach

CODFLL control algorithm generates reference signal for hysteresis controller. This reference signal is compared with an actual grid signal and a gate pulse is produced for a voltage source converter. The system is made frequency adaptive by transfer delay adaptive frequency locked loop (FLL). Peak power is extracted from a PV source using the perturb and observe technique irrespective of disturbances encountered in the system.

Findings

The PV system’s performance with the proposed controller is studied and compared with conventional control algorithms such as least mean fourth (LMF), improved second-order generalized integrator frequency locked loop (ISOGI-FLL), synchronous reference frame phased lock loop (SRF-PLL) and frequency adaptive disturbance observer (DOB) for different cases, for example, steady-state condition, dynamic condition, variable insolation, voltage sag and swell and frequency wandering in the supply side. It is found that the proposed method tracks the frequency variation faster as compared to ISOGI-FLL without any oscillations. During unbalanced loading conditions, CODFLL exhibits zero oscillations. Harmonics in system parameters are reduced to the level of IEEE standard; unity power factor is maintained at the grid side; hassle-free power flow takes place from the source to the grid and load; and consistent voltage profile is maintained at the coupling point.

Originality/value

CODFLL control algorithm is developed for PV-DSTATCOM systems to generate a reference grid current.

1 – 10 of over 134000