Search results

1 – 10 of 153
Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2024

Mohammad Vahid Ehteshamfar, Amir Kiadarbandsari, Ali Ataee, Katayoun Ghozati and Mohammad Ali Bagherkhani

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However…

Abstract

Purpose

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However, the staircase effect poses a challenge to the application of invisible orthodontics in the dental industry. The purpose of this study is to implement chemical postprocessing technique by using isopropyl alcohol as a solvent to overcome this challenge.

Design/methodology/approach

Fifteen experiments were conducted using a D-optimal design to investigate the effect of different concentrations and postprocessing times on the surface roughness, material removal rate (MRR), hardness and cost of SLA dental parts required for creating a clear customized aligner, and a container was constructed for chemical treatment of these parts made from photocurable resin.

Findings

The study revealed that the chemical postprocessing technique can significantly improve the surface roughness of dental SLA parts, but improper selection of concentration and time can lead to poor surface roughness. The optimal surface roughness was achieved with a concentration of 90 and a time of 37.5. Moreover, the dental part with the lowest concentration and time (60% and 15 min, respectively) had the lowest MRR and the highest hardness. The part with the highest concentration and time required the greatest budget allocation. Finally, the results of the multiobjective optimization analysis aligned with the experimental data.

Originality/value

This paper sheds light on a previously underestimated aspect, which is the pivotal role of chemical postprocessing in mitigating the adverse impact of stair case effect. This nuanced perspective contributes to the broader discourse on AM methodologies, establishing a novel pathway for advancing the capabilities of SLA in dental application.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 November 2022

Pooneh Kardar and Reza Amini

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Abstract

Purpose

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Design/methodology/approach

In this research, topographies with a different method, such as hot embossing and hot pulling, were achieved, and biological analyses were done with macroalgae Ulva Linza cells. The effect of topography via local binding geometry (honeycomb size gradients) and Wenzel roughness on the settling of Ulva microorganisms was tested.

Findings

As a result, Ulva spores confirmed different reactions to a similar set of tapered microstructures that was in agreement with the results on distinct honeycombs. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Research limitations/implications

The reaction of an organism at the interface of vehicles’ substrate is powerfully affected by surface topographies.

Practical implications

The best embedment occurred on structures with bigger sizes than Ulva Linza’s spores. The density of settled spores was proportional to Wenzel roughness and the spores favour to attach to “kink sites” positions.

Social implications

Unfortunately, unpleasant aggregation of marine biofouling on marine vehicles’ surfaces, generate terrific difficulties in the relevant industry.

Originality/value

There was a sharp relationship between Wenzel roughness and settle of Ulva Linza spores. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 26 April 2024

Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…

Abstract

Purpose

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.

Design/methodology/approach

Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.

Findings

The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.

Originality/value

This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.

Graphical abstract

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 8 May 2024

Hossa F. Al-Shareef, Ahmed M. Yousif, Rafaat Eleisawy, Ammar M. Mahmoud and Hamada Abdelwahab

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid…

Abstract

Purpose

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid and evaluating their anticorrosive properties compared with those of unmodified alkyd coatings for steel protection.

Design/methodology/approach

Short, medium and long oil alkyds, which represented as (0, 10, 20 and 30% excess-OH) according to the resin constants (Patton, 1962), were prepared through a condensation polymerization reaction via a solvent process in a one-step reaction. The modification of alkyd was carried out by using DCBTGA as a source of dicarboxylic acid. The prepared modified alkyd was confirmed by IR and NMR spectral analysis. The physicochemical, mechanical and anticorrosion performance properties of the considered modified coating formulations against unmodified blank coating were studied to confirm their application efficiency.

Findings

The best results in terms of physicochemical, mechanical and anticorrosion performance properties were found according to the following of this order activity: 30 replacements of the modifier (DCBTGA) for each hydroxyl continent were 30% Ex-OH > 20% Ex-OH > 10% Ex-OH > 0% Ex-OH, compared with that formulation containing unmodified alkyd, especially with increasing the modifier percent.

Originality/value

The prepared DCBTGA-modified resins can be used for different applications based on the type of alkyd and application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 April 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Francis Augustus A. Pascua, Jules M. Juanites, Maricel A. Eneria, Richelle G. Zafra and Marish S. Madlangbayan

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper…

Abstract

Purpose

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper aims to present the results of experiments investigating the effect of incorporating such type of concrete waste on the strength and durability-related properties of concrete.

Design/methodology/approach

A total of 77 concrete cylinders sized Ø100 × 200 mm with varying amount of recycled concrete aggregate (RCA) (0%–100% by volume, at 25% increments) and maximum aggregate size (12.5, 19.0 and 25.0 mm) were fabricated and tested for slump, compressive strength, sorptivity and electrical resistivity. Disk-shaped specimens, 50-mm thick, were cut from the original cylinders for sorptivity and resistivity tests. Analysis of variance and post hoc test were conducted to detect statistical variability among the data.

Findings

Compared to regular concrete, a reduction of slump (by 18.6%), strength (15.1%), secondary sorptivity (31.5%) and resistivity (17.0%) were observed from concrete containing 100% RCA. Statistical analyses indicate that these differences are significant. In general, an aggregate size of 19 mm was found to produce the optimum value of slump, compressive strength and sorptivity in regular and RCA-added concrete.

Originality/value

The results of this study suggest that comparable properties of normal concrete were still achieved by replacing 25% of coarse aggregate volume with 19-mm RCA, which was processed from laboratory-tested concrete samples. Therefore, such material can be considered as a potential and sustainable alternative to crushed gravel for use in light or nonstructural concrete construction.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 January 2023

Sabah Ben Messaoud

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and…

Abstract

Purpose

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and physical properties of high-strength concretes (HSCs). In the formulations of HSC, aggregates by their high mass and volume proportion play an important role. When selecting aggregates, it is necessary to know their intrinsic properties. These properties influence the performance of concrete, in particular the quality of the granulate cimentary adhesion.

Design/methodology/approach

This experimental study focused on the effect of W/C ratio (0.25, 0.30, 0.35), the effect of replacing a part of cement by silica fume (SF) (8%), the effect of fraction of aggregate on properties of fresh and hardened concrete, the effect of different environment conversation like drinking water and sea water on compressive strength and the study of absorption of water and softening using the mix design method of the University of Sherbrooke combined with the Dreux-Gorisse method which gives good results.

Findings

At the end of our work, the examination of the results obtained made it possible to establish the correlations between the formulations studied and the physicomechanical characteristics of the concrete compositions (HSC25, HSC16, HSC8). The results of this study show that the use of three granular classifications (DMAX8, DMAX16 and DMAX25) and three report W/C (0.25, 0.30 and 0.35) in two different conservation environment (drinking water and sea water) give HSCs, HSC25 with an W/C = 0.25 ratio has reached the largest mechanical strength of 90 MPa for different environments of conservation. For selecting aggregates, it is necessary to know their intrinsic properties, these properties influence the strength of concrete. In general, there is a slight decrease in the compressive resistance of the specimens stored in seawater, it can be said that the conservation life has not had effect on the resistance (28 days). The effect of aggressive environment can appear in the long term.

Research limitations/implications

Mixed design and concrete fabrication with a 28-day compressive strength of up to 68 MPa or more of 90 MPa can now be possible used in Jiel (Algeria), and it should no longer be considered to be used only in an experimental domain. Addition of SF in concrete showed good development of strength between 7 and 28 days, depending on the design of the mix.

Practical implications

Concrete containing 8% SF with W/B of 0.25 has higher compressive strength than the other concretes, and concretes with SF are more resistant than concretes without SF, so it is possible to have concrete with a compressive strength of 82 MPa for W/C 0.25 without SF. Like as a result, we can avoid the use of SF to affect the strength of concrete at compressive strength of 68 MPa, and a slump of 21 cm, because the SF is the most expensive ingredient used in the composition of concrete and is therefore very important economically. One of the main factors of production of HSC above 90 MPa is use of aggregate DMAX25, which is stronger with W/B of 0.25 and 0.30.

Social implications

This mixtures leads to a very dense microstructure and low porosity and produces increased permeability of HSC and is able to resist the penetration of aggressive agents. This combination has a positive effect on the economy of concrete.

Originality/value

The combination of the Dreux-Gorisse method with the Sherbrook method is very beneficial for determining the percentage of aggregates used, and the use of coarse aggregates of Jijel to obtain HSC with 90 MPa and 16 cm of workability.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 February 2024

Seo-Hyeon Oh and Keun Park

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally…

Abstract

Purpose

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally burdensome, especially for intricate microcellular architectures. This study aims to propose a direct slicing method tailored for digital light processing-type AM processes for the efficient generation of slicing data for microcellular structures.

Design/methodology/approach

The authors proposed a direct slicing method designed for microcellular structures, encompassing micro-lattice and triply periodic minimal surface (TPMS) structures. The sliced data of these structures were represented mathematically and then convert into 2D monochromatic images, bypassing the time-consuming slicing procedures required by 3D STL data. The efficiency of the proposed method was validated through data preparations for lattice-based nasopharyngeal swabs and TPMS-based ellipsoid components. Furthermore, its adaptability was highlighted by incorporating 2D images of additional features, eliminating the requirement for complex 3D Boolean operations.

Findings

The direct slicing method offered significant benefits upon implementation for microcellular structures. For lattice-based nasopharyngeal swabs, it reduced data size by a factor of 1/300 and data preparation time by a factor of 1/8. Similarly, for TPMS-based ellipsoid components, it reduced data size by a factor of 1/60 and preparation time by a factor of 1/16.

Originality/value

The direct slicing method allows for bypasses the computational burdens associated with traditional indirect slicing from 3D STL data, by directly translating complex cellular structures into 2D sliced images. This method not only reduces data volume and processing time significantly but also demonstrates the versatility of sliced data preparation by integrating supplementary features using 2D operations.

Article
Publication date: 30 April 2024

Sangryul Go

The purpose of this study is to investigate the accumulation process of transfer film formation and dissipation and its effect on friction coefficients in non asbestos organic…

Abstract

Purpose

The purpose of this study is to investigate the accumulation process of transfer film formation and dissipation and its effect on friction coefficients in non asbestos organic friction materials with various lubricant FeS2 contents.

Design/methodology/approach

In total, 2.5%, 5% and 10% FeS2 were added as lubricating components to the friction materials. Friction tests composed of two stages were conducted for these friction materials, and the friction surfaces of the counterpart discs were examined using scanning electron microscopy.

Findings

The transfer film formation reduced the friction coefficients, and the transfer film dissipation influenced the recovery of the friction coefficients. The effect of a high content of FeS2 was to promote the transfer film formation at high temperatures and to hinder the transfer film dissipation at low temperatures, thus resulting in a decrease in the friction coefficients at high temperatures together with recovery retardation at low temperatures.

Originality/value

FeS2 contributed to the transfer film formation at high temperatures in the fade test but hindered the transfer film removal in the recovery test, resulting in the retardation of friction coefficient recovery. The mechanism by which the FeS2 lubricant component affected the transfer film formation and dissipation was analyzed and attributed to the different levels of FeS2 pyrolysis at different temperature levels.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 153