Search results

1 – 10 of 50
Open Access
Article
Publication date: 24 September 2020

Shanabhoga M.B., Krishnamurthy Bommaiah, Suresha S.V. and Shivani Dechamma

The purpose of this paper is to consider the climatic variables and evaluate the role of non-climatic factors that delicately influence agriculture. This study has come across…

3072

Abstract

Purpose

The purpose of this paper is to consider the climatic variables and evaluate the role of non-climatic factors that delicately influence agriculture. This study has come across various adaptation strategies such as modification in cultivation practices such as shifting planting dates, water-saving techniques and strategic nutrient management. Meanwhile, we are trying to forget the ground reality that a majority of the farmers are not aware of climate-resilient production technologies. However, farmers modify themselves in this climate change scenario for sustainable production. The practise of these adaptation strategies helps to reduce vulnerability to improve their “socio-economic status” and the “quality of life”.

Design/methodology/approach

The present study was attempted to document all the indigenous practices, which are practised by paddy-growers over time for confronting the climate crisis in the Hyderabad-Karnataka region of Karnataka state, India. A cross-sectional and questionnaire-based survey was conducted to collect primary data. The pre-tested interviewing questionnaire consisted of 7 sections with 51 questions. A total of 90 paddy-growing farmers of the region was selected as respondents for the survey. The descriptive statistics was used to analyse the collected data.

Findings

In respect of adopted strategies, the vast majority (96.67%) of the farmers had used crops as livestock fodder as they fall back in case of failure, followed by the majority (72.22%) of the selected appropriate varieties. Cent per cent of the farmers adopted the construction of waterways along the slope for safe disposal of rainwater. An overwhelming portion of the farmers adopted levelling of the land in between the bunds (96.67%) and construction of bunds to conserve moisture (95.56%). The majority (76.67%) of the farmers intensified agricultural activities on irrigated land. Nearly half of them (47.78%) paddy growers were practising zero tillage to save time and money.

Research limitations/implications

The current study was carried out in a few districts of Karnataka. Hence, any policy framed based on the outcomes of this study may not conform to the policy specification needs in general to other parts of the country. The farmers did not maintain record books for updating various records. Therefore, the accuracy of data depends on the memory of the respondents. However, the researcher had made every possible effort to make sure that the data collected are the best of the knowledge of the respondents and bear minimal distortions.

Practical implications

The major constraints to applying agricultural adaptation strategies in the study area have been a general lack of knowledge, expertise and data on climate change issues; a lack of specific climate change institutions to take on climate change work and the need for a better institutional framework in which to implement adaptation. Actions to address these gaps include, namely, training programmes for local government officials, dedicated research activities and post-graduate courses and the initiation of specific institutional frameworks for climate change. Furthermore, improving and strengthening human capital, through education, outreach and extension services, improves decision-making capacity at every level and increases the collective capacity to adapt.

Social implications

Hyderabad-Karnataka is already under pressure from climate stresses, which increases vulnerability to further climate change and reduces adaptive capacity. The adverse effects of climate change have a devastating effect particularly on paddy cultivation, which is the mainstay of most Hyderabad-Karnataka Region. This has affected food production with its resultant effect on widespread poverty. Farmers in the study area have developed traditional agricultural adaptation strategies to cope with climate variability and extreme events. Experience with these strategies needs to be shared among communities.

Originality/value

Though the many literatures were available on the adaptation strategies for climate change this research is one of the few studies to document the farmer led adaptation strategies. This study provides a better understanding of the importance of farmer led adaptation strategies which in turn helps to develop or modify the existing adaptation technologies to cope up with climate change. The authors have come across various adaptation strategies such as modification in cultivation practices such as shifting planting dates, water-saving techniques and strategic nutrient management. Meanwhile, we are trying to forget the ground reality that the majority of the farmers are not aware of climate-resilient production technologies. However, farmers modify themselves in this climate change scenario for sustainable production. The practise of these adaptation strategies helps to reduce vulnerability to improve their “socio-economic status” and the “quality of life”. Therefore, farmer-led adaptation strategies to confront with a change in climate require to be recorded.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 7 December 2020

Zhihua Zhang, Qiang Zhang and Muhammad Jawed Iqbal

527

Abstract

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 5
Type: Research Article
ISSN: 1756-8692

Article
Publication date: 28 July 2021

Navin Kumar, R.S. Walia and Surjit Angra

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different…

61

Abstract

Purpose

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight per cent of hybrid filler particles were investigated under a dry sliding medium from room temperature to 75°C.

Design/methodology/approach

The study was carried out using a pin-on-disc wear test set-up. The design of experiments was carried out in a controlled way using a central composite design based on response surface methodology to observe the effect of various parameters i.e. sliding velocity, sliding distance, the temperature of counterface and different applied load conditions during dry-sliding.

Findings

The maximum wear resistance was found at 9 Wt% loading of filler, 4 ms-1 sliding velocity, 30 N applied load, 54°C temperature of the counterface and 1,100 m sliding distance condition. Optimum values of hybrid filler loading, sliding velocity, applied load, the temperature of the counterface and sliding distance for the minimum coefficient of friction value and minimum friction force are 9 Wt%, 4 ms−1, 30 N, 54° C, 1,100 m and 12 Wt%, 3 ms−1, 20 N, 59°C and 1,100 m, respectively. The worn surface morphology was studied using scanning electron microscope, for wear dominant mechanisms.

Originality/value

The tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight % of hybrid filler particles, were investigated under dry sliding medium from room temperature to 75°C has not been attempted yet.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 August 2018

Ragab K. Abdel-Magied, Mohamed F. Aly and Heba I. Elkhouly

The fiber orientation is considered one of the important parameters that have an effect on the characteristics of composites. This paper aims to investigate the effect of fiber…

Abstract

Purpose

The fiber orientation is considered one of the important parameters that have an effect on the characteristics of composites. This paper aims to investigate the effect of fiber orientation on the abrasive wear of the glass-epoxy (G-E) composites with different silicon carbide (SiC) filler weights (Wt.%).

Design/methodology/approach

The wear rate of glass fiber reinforced with angle-ply 0º, ±45º and 90º is discussed. The G-E composites with different weights of SiC filler at angle ±45º are considered. Hand lay-up technique was adopted for specimen preparation. The influence of effective parameters such as filler Wt. %, normal load, abrasive size and abrading distance on the wear rate was presented and discussed.

Findings

Experimental tests including pin on disk, micro-hardness and scanning electron microscope were carried out to investigate the composite characteristics.

Originality/value

The experimental results showed that the resistance wear was superior in case of ±45º fiber orientations. A validation of the experimental results using Taguchi approach to verify the optimal wear rate parameters was presented.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 February 2014

Aleksandar Vencl, Ilija Bobic and Blaza Stojanovic

Aluminium alloys are frequently applied in automotive and other industries, since they provide mass reduction. Besides positive effects, aluminium alloys have their shortcomings…

Abstract

Purpose

Aluminium alloys are frequently applied in automotive and other industries, since they provide mass reduction. Besides positive effects, aluminium alloys have their shortcomings reflected, first of all, in inappropriate tribological properties of these materials. The aim of this research was to enable the production of cheap aluminium alloy matrix composite with favourable combination of structural, mechanical and tribological properties, focusing on the tribological behaviour.

Design/methodology/approach

The A356 Al-Si alloy was used as a matrix for producing metal matrix composites in compocasting process. Three different materials, in form of particles, were added to the matrix (Al2O3, SiC and graphite). Hardness and tribological properties (wear, friction and wear mechanism) of heat-treated (T6) samples were examined and compared. Tribological tests were carried out on ball-on-block tribometer under dry sliding conditions. Sliding was linear (reciprocating). Counter body was alumina ball. Average velocity was 0.038 m/s (max. 0.06 m/s), sliding distance was 500 m and normal load was 1 N.

Findings

The effect of two different ceramic particles and graphite particles on tribological properties of obtained composites was evaluated. Wear resistance of composites reinforced with SiC particles was higher and coefficient of friction was lower compared to the composite reinforced with Al2O3 particles. A dual hybrid composite (with SiC and graphite particles) showed the lowest value of wear rate and friction coefficient. Dominant wear mechanism for all tested material was adhesion.

Research limitations/implications

It seems useful to continue the work on developing hybrid composites containing soft graphite particles with A356 Al-Si alloy as matrix. The major task should be to improve particles distribution (especially with higher graphite content) and to explore tribological behaviour in diverse working conditions.

Originality/value

Particulate composites with A356 aluminium alloy as a matrix produced in compocasting process using ceramic particles (Al2O3, SiC) were investigated in many researches, but there are only few detailed analyses of dual composites (with the addition of ceramic and graphite particles). In some previous studies, it was shown that compocasting process, as relatively cheap technology, can obtain good structural and mechanical characteristics of composites. In this study, it was shown that even a low graphite content, under specified conditions, can improve tribological properties.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Viswanatha B.M., M. Prasanna Kumar, S. Basavarajappa and T.S. Kiran

This paper aims to investigate the wear behaviors of aged metal matrix composites and of the as-cast Al-Si alloy by using a pin-on-disk wear testing machine at room temperature.

Abstract

Purpose

This paper aims to investigate the wear behaviors of aged metal matrix composites and of the as-cast Al-Si alloy by using a pin-on-disk wear testing machine at room temperature.

Design/methodology/approach

Hypoeutectic (Al-7Si) alloy reinforced with low volume fractions of SiC particles (SiCp) and graphite (Gr) particles were prepared by the stir-casting process. It was found that the addition of 9 Wt.% of SiCp and 3 Wt.% of Gr particles conferred a beneficial effect in reducing the wear rate of the composites.

Findings

The worn-out surfaces of the specimens were examined using scanning electron microscopy (SEM); the extensive micro cracking occurs on the surface of the Al-7Si alloy tested at lower loads. The growth of these microcracks finally led to the delamination of the base alloy surface. The reinforcements (SiCp and Gr) particles tended to reduce the extent of plastic deformation in the surface layer, thereby reducing extensively the occurrence of micro cracking in the composites.

Originality/value

From the results, it is revealed that the quantity of wear rate was less for aged specimens compared to the as-cast specimens. The worn-out surfaces were studied using electron dispersive spectroscopy, and wear debris was analyzed using SEM.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Constantin Georgescu, Lorena Deleanu and Mihail Botan

This research aims to characterize the tribological behavior of polybutylene terephthalate (PBT) and PBT composites with micro glass beads (MGB) on steel, in dry conditions and on…

Abstract

Purpose

This research aims to characterize the tribological behavior of polybutylene terephthalate (PBT) and PBT composites with micro glass beads (MGB) on steel, in dry conditions and on a block-on-ring tester, pointing out the influence of sliding distance and speed. The tribology of PBT and its composites is still in an early stage because this thermoplastic polyester requires accurate technological and thermal treatment.

Design/methodology/approach

The composites were produced by ICEFS Savinesti Romania and contain PBT grade Crastin6130NC010 (as supplied by Du Pont), 0.5 […] 1.0 per cent (weight) Relamyd B-2Nf (polyamide grade produced by ICEFS, for a better dispersion of MGB), 1 per cent (weight) black carbon for technological and tribological reasons and different micro glass beads (MGB) concentrations (10.0 and 20.0 per cent weight). Tests were done for different sliding distances (2,500, 5,000 and 7,500 m) and speeds (0.5, 1.0 and 1.5 m/s) and a normal load of 5 N.

Findings

The friction coefficient and the wear parameter (as mass loss of polymeric blocks) pointed out a good tribological behavior for these composites. Scanning electron microscope (SEM) images revealed particular aspects of PBT local transfer on steel. Also, 10 per cent MGB in PBT reduces wear, especially for longer distances (75,000 m) and higher speeds (0.5 and 0.75 m/s); the friction coefficient is only slightly increased up to 0.23, being less influenced by the speed and the sliding distance as compared to neat polymer.

Originality/value

PBT and PBT composites could become challengers for replacing materials in applications similar to tested ones. Even the neat polymer exhibits a good tribological behavior. The composites have a lower sensibility to higher speeds and sliding distances for the applied load.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 December 2018

İsmail Kaya and Zeynep Parlar

The tribological behavior of composites varies on matrices materials, the reinforcement material and the direction of reinforcement materials. The purpose of this study is to…

Abstract

Purpose

The tribological behavior of composites varies on matrices materials, the reinforcement material and the direction of reinforcement materials. The purpose of this study is to examine the effects of fiber orientation on the tribological properties of carbon fiber–reinforced epoxy composite.

Design/methodology/approach

The experiments were carried out with a pin-on-ring tribometer. The tests were executed according to three different parameters: load, sliding velocity and direction of reinforcement. Loads measuring 92 N and 150 N were applied at sliding velocities of 1 and 2 m/s, in parallel, antiparallel and normal directions of fiber reinforcements. The frictional force was read every 500 m of sliding distance. To calculate specific wear rate, the mass of the samples was measured before and after each experiment. Moreover, temperature was measured every 1000 m of sliding distance via three-point infrared thermometer, to examine the effect of temperature variations. The sample surfaces were also examined in optic microscope after the experiments. Higher friction coefficient values were obtained in the normal direction-oriented carbon fiber specimen.

Findings

Comparing the friction coefficient values, antiparallel and parallel direction-oriented carbon fiber specimens gave lower friction coefficient values. The increase of sliding velocity and normal load resulted in the increase of surface temperature and this lead to the increase of friction coefficient.

Originality/value

This study shows the effects of fiber orientation on the tribological behavior of carbon fiber–reinforced epoxy composite. According to fiber orientations, relatively moving counter surfaces of this material shows different tribological behaviors.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Book part
Publication date: 25 July 2023

Deepa Jain, Manoj Kumar Dash and K.S. Thakur

Abstract

Details

The Sustainability of Financial Innovation in E-Payment Systems
Type: Book
ISBN: 978-1-80455-884-3

1 – 10 of 50