Search results

1 – 10 of 11
Article
Publication date: 16 April 2024

Guilherme Homrich, Aly Ferreira Flores Filho, Paulo Roberto Eckert and David George Dorrell

This paper aims to introduce an alternative for modeling levitation forces between NdFeB magnets and bulks of high-temperature superconductors (HTS). The presented approach should…

Abstract

Purpose

This paper aims to introduce an alternative for modeling levitation forces between NdFeB magnets and bulks of high-temperature superconductors (HTS). The presented approach should be evaluated through two different formulations and compared with experimental results.

Design/methodology/approach

The T-A and H-ϕ formulations are among the most efficient approaches for modeling superconducting materials. COMSOL Multiphysics was used to apply them to magnetic levitation models and predict the forces involved.The permanent magnet movement is modeled by combining moving meshes and magnetic field identity pairs in both 2D and 3D studies.

Findings

It is shown that it is possible to use the homogenization technique for the T-A formulation in 3D models combined with mixed formulation boundaries and moving meshes to simulate the whole device’s geometry.

Research limitations/implications

The case studies are limited to the formulations’ implementation and a brief assessment regarding degrees of freedom. The intent is to make the simulation straightforward rather than establish a benchmark.

Originality/value

The H-ϕ formulation considers the HTS bulk domain as isotropic, whereas the T-A formulation homogenization approach treats it as anisotropic. The originality of the paper lies in contrasting these different modeling approaches while incorporating the external magnetic field movement by means of the Lagrangian–Eulerian method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 May 2023

Bassam Abdallah, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical…

42

Abstract

Purpose

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical properties. The aim of this work was depositing NbN thin films on two types of substrates (stainless steel (SS304) and silicon (100)) using plasma technique at varied powers (100–150 W).

Design/methodology/approach

DC magnetron sputtering technique at different powers were used to synthesis NbN films. Film structure was studied using X-ray diffraction (XRD) pattern. Rutherford elastic backscattering and energy dispersive X-ray were used to examine the deposited film composition. The films morphology was studied via atomic force microscopy and scanning electron microscopy images. Corrosion resistance of the three NbN/SS304 films was studied in 0.9% NaCl environment (physiological standard saline).

Findings

All properties could be controlled by the modification of DC power, where the crystallinity of samples was changed and consequently the corrosion and microhardness were modified, which correlated with the power. NbN film deposited at higher power (150 W) has shown better corrosion resistance (0.9% NaCl), which had smaller grain size (smoother) and was thicker.

Originality/value

The NbN films have a preferred orientation (111) matching to cubic structure phase. Corrosion resistance was enhanced for the NbN films compared to SS304 substrates (noncoating). Therefore, NbN films deposited on SS304 substrate could be applied as medicinal tools as well as in mechanical fields.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2023

Mykola Riabchykov, Liudmyla Nazarchuk, Oksana Tkachuk and Victoria Stytsyuk

This paper aims to prove the expediency and effectiveness of magnetic textiles use obtained by adding nanopowder synthesized on the basis of oxides of divalent and trivalent iron…

Abstract

Purpose

This paper aims to prove the expediency and effectiveness of magnetic textiles use obtained by adding nanopowder synthesized on the basis of oxides of divalent and trivalent iron oxides, taking into account bacteriostatic, magnetotherapeutic and compressive properties.

Design/methodology/approach

The research includes methods of synthesis of nanoelements of bivalent and trivalent iron, methods of the theory of elasticity for determining the pressure between compression clothing and a limb, methods of creating an annular magnetic field with determination of its voltage, methods of determining the growth dynamics of mold bacteria and methods of approximation of experimental data.

Findings

On the base of the determination of the forces arising from the interaction of magnetic nanotextiles with a magnetic field, the expediency of using these materials in the creation of compression clothing has been proven. An additional medical value of magnetic textiles is the bacteriostatic effect. The content of magnetic nanoelements in the textile composition of 0.2% almost completely suppresses mold infections

Research limitations/implications

Cotton samples with the addition of nanocomponents based on ferric and ferric oxides were studied.

Practical implications

Magnetotextile materials can be used in magnetotherapy, compression clothing, in textile products that provide bacteriostatic properties.

Originality/value

The use of magnetic textile materials is a perspective direction for the creation of medical textile products with complex properties.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 February 2024

Miguel Núñez-Merino, Juan Manuel Maqueira-Marín, José Moyano-Fuentes and Carlos Alberto Castaño-Moraga

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational…

Abstract

Purpose

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational agility capability in Industry 4.0 manufacturing and logistics operations.

Design/methodology/approach

A multi-case study approach is used to determine the impact of quantum-inspired computing technology in manufacturing and logistics processes from the supplier perspective. A literature review provides the basis for a framework to identify a set of flexibility and agility operational capabilities enabled by Industry 4.0 Information and Digital Technologies. The use cases are analyzed in depth, first individually and then jointly.

Findings

Study results suggest that quantum-inspired computing technology has the potential to harness and boost companies' operational flexibility to enhance operational agility in manufacturing and logistics operations management, particularly in the Industry 4.0 context. An exploratory model is proposed to explain the relationships between quantum-inspired computing technology and the deployment of operational agility capabilities.

Originality/value

This is study explores the use of quantum-inspired computing technology in Industry 4.0 operations management and contributes to understanding its potential to enable operational agility capability in manufacturing and logistics operations.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 12 January 2024

Masume Khodsuz, Amir Hamed Mashhadzadeh and Aydin Samani

Electrical characteristics of transformer oil (TO) have been studied during normal and thermal aging conditions. In this paper, breakdown voltage (BDV), partial discharge (PD)…

Abstract

Purpose

Electrical characteristics of transformer oil (TO) have been studied during normal and thermal aging conditions. In this paper, breakdown voltage (BDV), partial discharge (PD), heat transfer results and the physical mechanisms considering the impact of varying the diameter of Al2O3 nanoparticles (NPs) have been investigated. Different quantities of the two sizes of Al2O3 were added to the oil using a two-step method to determine the positive effect of NPs on the electrical and thermal properties of TO. Finally, the physical mechanisms related to the obtained experimental results have been performed.

Design/methodology/approach

The implementation of nanoparticles in this paper was provided by US Research Nanomaterials, Inc., USA. The provided Al2O3 NPs have an average particle size of 20–80 nm and a specific surface area of 138 and 58 m2/g, respectively, which have a purity of over 99%. Thermal aging has been done. The IEC 60156 standard has been implemented to calculate the BDV, and a 500-mL volume test cell (Apar TO 1020) has been used. PD test is performed according to Standard IEC 60343, and a JDEVS-PDMA 300 device was used for this test.

Findings

BDV tests indicate that 20 nm Al2O3 is more effective at improving BDV than 80 nm Al2O3, with an improvement of 113% compared to 99% for the latter. The analysis of Weibull probability at BDV indicates that 20 nm Al2O3 performs better, with improvements of 141%, 125% and 112% at probabilities of 1, 10 and 50%, respectively. The results of the PD tests using the PDPR pattern also show that 20 nm Al2O3 is superior. For the heat transfer test, 0.05 g/L of both diameters were used to ensure fair conditions, and again, the advantage was with 20 nm Al2O3 (23% vs 18%).

Originality/value

The effect of Al2O3 NP diameter (20 and 80 nm) on various properties of virgin and aged TO has been investigated experimentally in this paper to examine the effect of proposed NP on electrical improvement of TO.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 January 2024

Divya Shree M. and Srinivasa Rao Inabathini

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics…

Abstract

Purpose

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics on a low-loss Taconic substrate and analyze using the coupled theory of resonators for UWB range covering L, S, C and X bands for radars, global positioning system (GPS) and satellite communication applications.

Design/methodology/approach

The filter is designed with a bent coupled transmission line on the top copper layer. Defected ground structures (DGSs) like complementary split ring resonators (CSRRs), V-shaped resonators, rectangular slots and quad circle slots (positioned inwards and outwards) are etched in the ground layer of the filter. The circular orientation of V-shaped resonators adds compactness when linearly placed. By arranging the quad circle slots outwards and inwards at the corner and core of the ground plane, respectively, two filters (Filters I and II) are designed, fabricated and measured. These two filters feature a quasi-elliptic response with transmission zeros (TZs) on either side of the bandpass response, making it highly selective and reflection poles (RPs), resulting in a low-loss filter response. The transmission line model and coupled line theory are implemented to analyze the proposed filters.

Findings

Two filters by placing the quad circle slots outwards (Filter I) and inwards (Filter II) were designed, fabricated and tested. The fabricated model (Filter I) provides transmission with a maximum insertion loss of 2.65 dB from 1.5 GHz to 9.2 GHz. Four TZs and five RPs are observed in the frequency response. The lower and upper stopband band width (BW) of the measured Filter I are 1.2 GHz and 5.5 GHz of upper stopband BW with rejection level greater than 10 dB, respectively. Filter II (inward quad circle slots) operates from 1.4 GHz to 9.05 GHz with 1.65 dB maximum insertion loss inside the passband with four TZs and four RPs, which, in turn, enhances the filter characteristics in terms of selectivity, flatness and stopband. Moreover, 1 GHz BW of lower and upper stopbands are observed. Thus, the fabricated filters (Filters I and II) are therefore evaluated, and the outcomes show good agreement with the electromagnetic simulation response.

Research limitations/implications

The limitation of this work is the back radiation caused by DGS, which can be eradicated by placing the filter in the cavity and retaining its performance.

Practical implications

The proposed UWB BPFs with novel resonators find their role in the UWB range covering L, S, C and X bands for radars, GPS and satellite communication applications.

Originality/value

To the best of the authors’ knowledge, for the first time, the authors develop a compact UWB BPFs (Filters I and II) with BW greater than 7.5 GHz by combining reformed coupled lines and DGS resonators (CSRRs, V-shaped resonators [modified hairpin resonators], rectangular slots and quad circle slots [inwards and outwards]) for radars, GPS and satellite communication applications.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 March 2024

Mouna Zerzeri, Intissar Moussa and Adel Khedher

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Abstract

Purpose

The purpose of this paper aims to design a robust wind turbine emulator (WTE) based on a three-phase induction motor (3PIM).

Design/methodology/approach

The 3PIM is driven by a soft voltage source inverter (VSI) controlled by a specific space vector modulation. By adjusting the appropriate vector sequence selection, the desired VSI output voltage allows a real wind turbine speed emulation in the laboratory, taking into account the wind profile, static and dynamic behaviors and parametric variations for theoretical and then experimental analysis. A Mexican hat profile and a sinusoidal profile are therefore used as the wind speed system input to highlight the electrical, mechanical and electromagnetic system response.

Findings

The simulation results, based on relative error data, show that the proposed reactive power control method effectively estimates the flux and the rotor time constant, thus ensuring an accurate trajectory tracking of the wind speed for the wind emulation application.

Originality/value

The proposed architecture achieves its results through the use of mathematical theory and WTE topology combine with an online adaptive estimator and Lyapunov stability adaptation control methods. These approaches are particularly relevant for low-cost or low-power alternative current (AC) motor drives in the field of renewable energy emulation. It has the advantage of eliminating the need for expensive and unreliable position transducers, thereby increasing the emulator drive life. A comparative analysis was also carried out to highlight the online adaptive estimator fast response time and accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 March 2024

Shahin Alipour Bonab, Alireza Sadeghi and Mohammad Yazdani-Asrami

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are…

Abstract

Purpose

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are used to dampen the electric field imposed on the insulator. The purpose of this study is to present a fast and intelligent surrogate model for determination of the electric field imposed on the surface of a 120 kV composite insulator, in presence of the Corona ring.

Design/methodology/approach

Usually, the structural design parameters of the Corona ring are selected through an optimization procedure combined with some numerical simulations such as finite element method (FEM). These methods are slow and computationally expensive and thus, extremely reducing the speed of optimization problems. In this paper, a novel surrogate model was proposed that could calculate the maximum electric field imposed on a ceramic insulator in a 120 kV line. The surrogate model was created based on the different scenarios of height, radius and inner radius of the Corona ring, as the inputs of the model, while the maximum electric field on the body of the insulator was considered as the output.

Findings

The proposed model was based on artificial intelligence techniques that have high accuracy and low computational time. Three methods were used here to develop the AI-based surrogate model, namely, Cascade forward neural network (CFNN), support vector regression and K-nearest neighbors regression. The results indicated that the CFNN has the highest accuracy among these methods with 99.81% R-squared and only 0.045468 root mean squared error while the testing time is less than 10 ms.

Originality/value

To the best of the authors’ knowledge, for the first time, a surrogate method is proposed for the prediction of the maximum electric field imposed on the high voltage insulators in the presence Corona ring which is faster than any conventional finite element method.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 11