Search results

1 – 10 of 523
Article
Publication date: 12 September 2023

Yuzhu Han, Jieshi Chen, Shuye Zhang and Zhishui Yu

This paper aims to investigate the effect of solder composition and roughness on early wetting behavior and interfacial reaction under atmospheric conditions.

Abstract

Purpose

This paper aims to investigate the effect of solder composition and roughness on early wetting behavior and interfacial reaction under atmospheric conditions.

Design/methodology/approach

High-speed photography is used to observe the early wetting and spreading process of the solder on the substrate in real time. The morphology of intermetallic compounds (IMCs) was observed by scanning electron microscopy, and the composition of IMCs micro bumps was determined by energy dispersive spectroscopy.

Findings

With a roughness range of 0.320–0.539 µm, the solder is distributed in an elliptical trilinear pattern along the grinding direction. With a roughness range of 0.029–0.031 µm, the solder spreads in the direction of grinding and perpendicular, forming a perfect circle (except in the case of Sn63Pb37 solder). The effect of three types of solder on early wettability is Sn63Pb37 > Sn96.5Ag3Cu0.5 > Sn. The wetting behavior is consistent with the Rn∼t model. The rapid spreading stage (Stage I) is controlled by the interfacial reaction with n1 values between 2.4 and 4. The slow spreading stage (stage II) is controlled by diffusion with n2 values between 4 and 6.7. The size of Cu6Sn5 formed on a rough substrate is greater than that produced on a smooth substrate.

Originality/value

Investigating the effect of solder composition and roughness on early wettability. This will provide a powerful guide in the field of soft brazing.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 April 2023

Mozhgan Hosseinnezhad and Zahra Ranjbar

The purpose of this paper is to introduce flexible dye-sensitized solar cells (FDSSCs).

Abstract

Purpose

The purpose of this paper is to introduce flexible dye-sensitized solar cells (FDSSCs).

Design/methodology/approach

In the third generation solar cells, glass was used as a substrate, which due to its high weight and fragility, was not possible to produce continuously. However, in flexible solar cells, flexible substrates are used as new technology. The most important thing may choose a suitable substrate to produce a photovoltaic (PV) device with optimal efficiency.

Findings

Conductive plastics or metallic foils are the two main candidates for glass replacement, each with its advantages and disadvantages. As some high-temperature methods are used to prepare solar cells, metal substrates can be used to prepare PV devices without any problems. In contrast to the advantage of high thermal resistance in metals, metal substrates are dark and do not transmit enough light. In other words, metal substrates have a high loss of photon energy. Like all technologies, PV devices with polymer substrates have technical disadvantages.

Practical implications

In this study, the development of FDSSCs offers improved photovoltaic properties.

Social implications

The most important challenge is the poor thermal stability of polymers compared to glass and metal, which requires special methods to prepare polymer solar cells. The second important point is choosing the suitable components and materials for this purpose.

Originality/value

Dependence of efficiency and performance of the device on the angle of sunlight, high-cost preparation devices components, limitations of functional materials such as organic-mineral sensitizers, lack of close connection between practical achievements and theoretical results and complicated fabrication process and high weight.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 January 2023

Supriya Yadav, Kulwant Singh, Anmol Gupta, Mahesh Kumar, Niti Nipun Sharma and Jamil Akhtar

The purpose of this paper is to predict a suitable paper substrate which has high capillary pressure with the tendency of subsequent fluid wrenching in onward direction for the…

Abstract

Purpose

The purpose of this paper is to predict a suitable paper substrate which has high capillary pressure with the tendency of subsequent fluid wrenching in onward direction for the fabrication of microfluidics device application.

Design/methodology/approach

The experiment has been done on the WhatmanTM grade 1, WhatmanTM chromatography and nitrocellulose paper samples which are made by GE Healthcare Life Sciences. The structural characterization of paper samples for surface properties has been done by scanning electron microscope and ImageJ software. Identification of functional groups on the surface of samples has been done by Fourier transform infrared analysis. A finite elemental analysis has also been performed by using the “Multiphase Flow in Porous Media” module of the COMSOL Multiphysics tool which combines Darcy’s law and Phase Transport in Porous Media interface.

Findings

Experimentally, it has been concluded that the paper substrate for flexible microfluidic device application must have large number of internal (intra- and interfiber) pores with fewer void spaces (external pores) that have high capillary pressure to propel the fluid in onward direction with narrow paper fiber channel.

Originality/value

Surface structure has a dynamic impact in paper substrate utilization in multiple applications such as paper manufacturing, printing process and microfluidics applications.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 June 2023

Wei Lin, Xuewen Li, Bing Tu, Chaohua Zhang and Yulong Li

This study aims to analyze the wettability of the self-developed Sn–Bi–Zn solder and to conduct a series of analysis on the wetting kinetics, diffusion phenomenon and interfacial…

Abstract

Purpose

This study aims to analyze the wettability of the self-developed Sn–Bi–Zn solder and to conduct a series of analysis on the wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–Bi–Zn solder on Cu substrate.

Design/methodology/approach

The wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–Bi–Zn solder on Cu substrate were analyzed by experiments. The interface was observed by scanning electron microscope to study the effect of Zn content on its interface.

Findings

With the increase in brazing temperature, the final spreading equivalent radius of the solder increases significantly, and the final contact angle of the solder decreases significantly. In addition, when the Zn content is 1%, the spreading effect of solder is the best, the equivalent radius is the largest and the contact angle is the smallest. According to the microstructural analysis, the thick intermetallic compounds layer of the Sn–15Bi–xZn solders on the Cu substrate can be effectively decreased by adding appropriate Zn content.

Originality/value

The wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–15Bi–xZn solder on Cu substrate at different temperatures have not been studied yet.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 January 2024

He Lu, Yuhou Wu, Zijin Liu, He Wang, Guangyu Yan, Xu Bai, Jiancheng Guo and Tongxiang Zheng

Preparing CrAlN coatings on the surface of silicon nitride bearings can improve their service life in oil-free lubrication. This paper aims to match the optimal process parameters…

Abstract

Purpose

Preparing CrAlN coatings on the surface of silicon nitride bearings can improve their service life in oil-free lubrication. This paper aims to match the optimal process parameters for preparing CrAlN coatings on silicon nitride surfaces, and reveal the microscopic mechanism of process parameter influence on coating wear resistance.

Design/methodology/approach

This study used molecular dynamics to analyze how process parameters affected the nucleation density, micromorphology, densification and internal stress of CrAlN coatings. An orthogonal test method was used to examine how deposition time, substrate temperature, nitrogen-argon flow rate and sputtering power impacted the wear resistance of CrAlN coatings under dry friction conditions.

Findings

Nucleation density, micromorphology, densification and internal stress have a significant influence on the surface morphology and wear resistance of CrAlN coatings. The process parameters for better wear resistance of the CrAlN coatings were at a deposition time of 120 min, a substrate temperature of 573 K, a nitrogen-argon flow rate of 1:1 and a sputtering power of 160 W.

Originality/value

Simulation analysis and experimental results of this paper can provide data to assist in setting process parameters for applying CrAlN coatings to silicon nitride bearings.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 November 2023

Meng Jiang, Yang Liu, Ke Li, Zhen Pan, Quan Sun, Yongzhe Xu and Yuan Tao

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Abstract

Purpose

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Design/methodology/approach

In this study, HTS at 250 °C was carried out to investigate the reliability of nano-silver sintered joints. Combining the evolution of the microstructure and shear strength of the joints, the degradation mechanisms of joints performance were characterized.

Findings

The results indicated that the degradation of the shear properties of sintered nano-silver joints on copper substrates was attributed to copper oxidation at the silver/copper interface and interdiffusion of interfacial elements. The joints decreased by approximately 57.4% compared to the original joints after aging for 500 h. In addition, severe coarsening of the silver structure was also an important cause for joints failure during HTS.

Originality/value

This paper provides a comparison of quantitative and mechanistic evaluation of sintered silver joints on bare copper substrates during HTS, which is of great importance in promoting the development of sintered silver technology.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 2023

Dhinesh S.K. and Senthil Kumar Kallippatti Lakshmanan

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid…

Abstract

Purpose

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid (CPLA)-based 3D-printed strain sensor by modifying the sensing element geometry.

Design/methodology/approach

Five different configurations, namely, linear, serpentine, square, triangular and trapezoidal, of CPLA sensing elements are printed on the thermoplastic polyurethane substrate material individually. The resistance change ratio of the printed sensors, when loaded to a predefined percentage of the maximum strain values over multiple cycles, is recorded. Finally, the thickness of substrate and CPLA and the included angle of the triangular strain sensor are evaluated for their influences on the sensitivity.

Findings

The triangular configuration yields the least hysteresis error with high accuracy over repeated loading conditions, because of its uniform stress distribution, whereas the conventional linear configuration produces the maximum sensitivity with low accuracy. The thickness of the substrate and sensing element has more influence over the included angle, in enhancing the sensitivity of the triangular configuration. The sensitivity of the triangular configuration exceeds the linear configuration when printed at ideal sensor dimensional values.

Research limitations/implications

The 3D printing parameters are kept constant for all the configurations; rather it can be varied for improving the performance of the sensor. Furthermore, the influences of stretching rate and nozzle temperature of the sensing material are not considered in this work.

Originality/value

The sensitivity and accuracy of CPLA-based strain sensor are evaluated for modification in its geometry, and the performance metrics are enhanced using the regression modelling.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 November 2022

Nehem Tudu, Mayuri Baruah and Shashi Bhushan Prasad

Prior to manufacturing, designing plays a vital role in the selection of materials and other design parameters. Therefore, during the deposition of materials, substrate materials…

Abstract

Purpose

Prior to manufacturing, designing plays a vital role in the selection of materials and other design parameters. Therefore, during the deposition of materials, substrate materials provide support and affect the microstructure of the deposits, which may not be desirable in the manufactured product. Hence, the main purpose of the study is to analyse the behaviour of the microstructure at the interface of deposited material and substrate.

Design/methodology/approach

In this study, two blocks of Inconel 625 (IN625) and Stainless steel 304L (SS304L) metal powders were deposited on an SS304L substrate using laser directed energy deposition (DED) technique. Deposited blocks comprised 50% IN625 + 50% SS304L or 100% IN625. After deposition, microstructural behaviour at the interface of the deposits and substrates was analysed using different tests such as optical microscopy (OM), microhardness testing, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). An improvement in microstructure was proposed by performing heat treatment of the deposited sample.

Findings

Formation of martensite and precipitates at the interface of the deposit and substrate was observed. Formation of martensite and precipitates such as α, carbide and δ phases were observed in OM and SEM images. Due to the formation of these phases, interface regions showed a peak in the hardness graphs. Post-heat treatment of the samples was one of the solutions to resolve these issues.

Originality/value

This paper suggests the formation of a heat-affected zone (HAZ) at the interface of the deposit and substrate, which may negatively affect the overall utility of the deposited part. The properties of the HAZ were investigated. To suppress these detrimental effects, post-heat treatment of the deposited sample was performed, and the samples were further analysed. The post-heat-treated samples exhibited as reduction in HAZ thickness and had more uniform hardness throughout the cross-section compared with the untreated samples.

Article
Publication date: 18 March 2024

Li Liu, Chunhua Zhang, Ping Hu, Sheng Liu and Zhiwen Chen

This paper aims to investigate the moisture diffusion behavior in a system-in-package module systematically by moisture-thermalmechanical-coupled finite element modeling with…

Abstract

Purpose

This paper aims to investigate the moisture diffusion behavior in a system-in-package module systematically by moisture-thermalmechanical-coupled finite element modeling with different structure parameters under increasingly harsh environment.

Design/methodology/approach

A finite element model for a system-in-package module was built with moisture-thermal-mechanical-coupled effects to study the subsequences of hygrothermal conditions.

Findings

It was found in this paper that the moisture diffusion path was mainly dominated by hygrothermal conditions, though structure parameters can affect the moisture distribution. At lower temperatures (30°C~85°C), the direction of moisture diffusion was from the periphery to the center of the module, which was commonly found in simulations and literatures. However, at relatively higher temperatures (125°C~220°C), the diffusion was from printed circuit board (PCB) to EMC due to the concentration gradient from PCB to EMC across the EMC/PCB interface. It was also found that there exists a critical thickness for EMC and PCB during the moisture diffusion. When the thickness of EMC or PCB increased to a certain value, the diffusion of moisture reached a stable state, and the concentration on the die surface in the packaging module hardly changed. A quantified correlation between the moisture diffusion coefficient and the critical thickness was then proposed for structure parameter optimization in the design of system-in-package module.

Originality/value

The different moisture diffusion behaviors at low and high temperatures have seldom been reported before. This work can facilitate the understanding of moisture diffusion within a package and offer some methods about minimizing its effect by design optimization.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 19 February 2024

Bassem Assfour, Bassam Abdallah, Hour Krajian, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the…

Abstract

Purpose

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the direct current (DC) magnetron sputtering technique.

Design/methodology/approach

DC sputtering at different powers – 80, 100 and 120 W – was used to deposit ZrO2 thin films onto different substrates (Si/SS304) without annealing of the substrate. Atomic force microscope (AFM), energy-dispersive X-ray spectroscopy (EDS), Tafel extrapolation and contact angle techniques were applied to investigate the surface roughness, chemical compositions, corrosion behavior and hydrophobicity of these films.

Findings

Results showed that the thickness of the deposited film increased with power increase, while the corrosion current decreased with power increase. AFM images indicated that the surface roughness decreased with an increase in DC power. EDS analysis showed that the thin film has a stoichiometric ZrO2 (Zr:O 1:2) composition with basic uniformity. Water contact angle measurements indicated that the hydrophobicity of the synthesized films decreased with an increase in surface roughness.

Originality/value

DC magnetron sputtering technique is infrequently used to deposition thin films. The obtained thin films showed good hydrophobic and anticorrosion properties. Finally, results are compared with other deposition techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 523