Search results

1 – 10 of 15
Article
Publication date: 19 October 2018

Hui Xiong, Youping Chen, Xiaoping Li and Bing Chen

Because submaps including a subset of the global map contain more environmental information, submap-based graph simultaneous localization and mapping (SLAM) has been studied by…

170

Abstract

Purpose

Because submaps including a subset of the global map contain more environmental information, submap-based graph simultaneous localization and mapping (SLAM) has been studied by many researchers. In most of those studies, helpful environmental information was not taken into consideration when designed the termination criterion of the submap construction process. After optimizing the graph, cumulative error within the submaps was also ignored. To address those problems, this paper aims to propose a two-level optimized graph-based SLAM algorithm.

Design/methodology/approach

Submaps are updated by extended Kalman filter SLAM while no geometric-shaped landmark models are needed; raw laser scans are treated as landmarks. A more reasonable criterion called the uncertainty index is proposed to combine with the size of the submap to terminate the submap construction process. After a submap is completed and a loop closure is found, a two-level optimization process is performed to minimize the loop closure error and the accumulated error within the submaps.

Findings

Simulation and experimental results indicate that the estimated error of the proposed algorithm is small, and the maps generated are consistent whether in global or local.

Practical implications

The proposed method is robust to sparse pedestrians and can be adapted to most indoor environments.

Originality/value

In this paper, a two-level optimized graph-based SLAM algorithm is proposed.

Details

Industrial Robot: An International Journal, vol. 45 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 December 2022

Jiaxiang Hu, Xiaojun Shi, Chunyun Ma, Xin Yao and Yingxin Wang

The purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state…

Abstract

Purpose

The purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state estimation and mapping.

Design/methodology/approach

M3LVI is built atop a factor graph and composed of two subsystems, a LiDAR-inertial system (LIS) and a visual-inertial system (VIS). LIS implements multi-feature extraction on point cloud, and then multi-metric transformation estimation is implemented to realize LiDAR odometry. LiDAR-enhanced images and IMU pre-integration have been used in VIS to realize visual odometry, providing a reliable initial guess for LIS matching module. Location recognition is performed by a dual loop module combined with Bag of Words and LiDAR-Iris to correct accumulated drift. M³LVI also functions properly when one of the subsystems failed, which greatly increases the robustness in degraded environments.

Findings

Quantitative experiments were conducted on the KITTI data set and the campus data set to evaluate the M3LVI. The experimental results show the algorithm has higher pose estimation accuracy than existing methods.

Practical implications

The proposed method can greatly improve the positioning and mapping accuracy of AGV, and has an important impact on AGV material distribution, which is one of the most important applications of industrial robots.

Originality/value

M3LVI divides the original point cloud into six types, and uses multi-metric transformation estimation to estimate the state of robot and adopts factor graph optimization model to optimize the state estimation, which improves the accuracy of pose estimation. When one subsystem fails, the other system can complete the positioning work independently, which greatly increases the robustness in degraded environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 May 2019

Haoyao Chen, Hailin Huang, Ye Qin, Yanjie Li and Yunhui Liu

Multi-robot laser-based simultaneous localization and mapping (SLAM) in large-scale environments is an essential but challenging issue in mobile robotics, especially in situations…

Abstract

Purpose

Multi-robot laser-based simultaneous localization and mapping (SLAM) in large-scale environments is an essential but challenging issue in mobile robotics, especially in situations wherein no prior knowledge is available between robots. Moreover, the cumulative errors of every individual robot exert a serious negative effect on loop detection and map fusion. To address these problems, this paper aims to propose an efficient approach that combines laser and vision measurements.

Design/methodology/approach

A multi-robot visual laser-SLAM is developed to realize robust and efficient SLAM in large-scale environments; both vision and laser loop detections are integrated to detect robust loops. A method based on oriented brief (ORB) feature detection and bag of words (BoW) is developed, to ensure the robustness and computational effectiveness of the multi-robot SLAM system. A robust and efficient graph fusion algorithm is proposed to merge pose graphs from different robots.

Findings

The proposed method can detect loops more quickly and accurately than the laser-only SLAM, and it can fuse the submaps of each single robot to promote the efficiency, accuracy and robustness of the system.

Originality/value

Compared with the state of art of multi-robot SLAM approaches, the paper proposed a novel and more sophisticated approach. The vision-based and laser-based loops are integrated to realize a robust loop detection. The ORB features and BoW technologies are further utilized to gain real-time performance. Finally, random sample consensus and least-square methodologies are used to remove the outlier loops among robots.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 24 August 2022

Yi Jiang, Ting Wang, Shiliang Shao and Lebing Wang

In large-scale environments and unstructured scenarios, the accuracy and robustness of traditional light detection and ranging (LiDAR) simultaneous localization and mapping (SLAM…

Abstract

Purpose

In large-scale environments and unstructured scenarios, the accuracy and robustness of traditional light detection and ranging (LiDAR) simultaneous localization and mapping (SLAM) algorithms are reduced, and the algorithms might even be completely ineffective. To overcome these problems, this study aims to propose a 3D LiDAR SLAM method for ground-based mobile robots, which uses a 3D LiDAR fusion inertial measurement unit (IMU) to establish an environment map and realize real-time localization.

Design/methodology/approach

First, we use a normal distributions transform (NDT) algorithm based on a local map with a corresponding motion prediction model for point cloud registration in the front-end. Next, point cloud features are tightly coupled with IMU angle constraints, ground constraints and gravity constraints for graph-based optimization in the back-end. Subsequently, the cumulative error is reduced by adding loop closure detection.

Findings

The algorithm is tested using a public data set containing indoor and outdoor scenarios. The results confirm that the proposed algorithm has high accuracy and robustness.

Originality/value

To improve the accuracy and robustness of SLAM, this method proposed in the paper introduced the NDT algorithm in the front-end and designed ground constraints and gravity constraints in the back-end. The proposed method has a satisfactory performance when applied to ground-based mobile robots in complex environments experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 1999

Shahid Yamin and A. Gunasekaran

Conceptually argues that quality is a cognitive issue and a process of continuous innovation. Adoption of such innovations requires understanding of the nature of an organisation…

1552

Abstract

Conceptually argues that quality is a cognitive issue and a process of continuous innovation. Adoption of such innovations requires understanding of the nature of an organisation and its customers’ cognitive domains. The conceptual arguments presented in this paper illustrate that integration of organisational and customers’ cognitive domains should be the central feature of any quality initiative undertaken by an organisation. Existing models, such as TQM, among others, may be adopted and applied with greater success if the organisation takes a cognitive approach to quality. The organisation needs to: identify the cognitive needs of its people in order to create shared values essential for a unified approach to quality; identify the cognitive needs of its customers to create an in‐depth understanding of their buying behaviours; and integrate the cognitive needs of customers to that of the organisation by aligning its values and resources to those of the customer. A conceptual model of organisational quality is presented.

Details

The TQM Magazine, vol. 11 no. 3
Type: Research Article
ISSN: 0954-478X

Keywords

Article
Publication date: 2 February 2024

Bushi Chen, Xunyu Zhong, Han Xie, Pengfei Peng, Huosheng Hu, Xungao Zhong and Qiang Liu

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system…

Abstract

Purpose

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system used by AMRs to overcome challenges in dynamic and changing environments.

Design/methodology/approach

This research introduces SLAM-RAMU, a lifelong SLAM system that addresses these challenges by providing precise and consistent relocalization and autonomous map updating (RAMU). During the mapping process, local odometry is obtained using iterative error state Kalman filtering, while back-end loop detection and global pose graph optimization are used for accurate trajectory correction. In addition, a fast point cloud segmentation module is incorporated to robustly distinguish between floor, walls and roof in the environment. The segmented point clouds are then used to generate a 2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D branch-and-bound search with 3D iterative closest point registration. This method ensures high accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed using the segmented point cloud on the prior map. The system also includes a map updating module that takes into account historical point cloud segmentation results. It selectively incorporates or excludes new point cloud data to ensure consistent reflection of the real environment in the map.

Findings

The performance of the SLAM-RAMU system was evaluated in real-world environments and compared against state-of-the-art (SOTA) methods. The results demonstrate that SLAM-RAMU achieves higher mapping quality and relocalization accuracy and exhibits robustness against dynamic obstacles and environmental changes.

Originality/value

Compared to other SOTA methods in simulation and real environments, SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 January 2024

Xiangdi Yue, Yihuan Zhang, Jiawei Chen, Junxin Chen, Xuanyi Zhou and Miaolei He

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and…

Abstract

Purpose

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) techniques. This paper aims to provide a significant reference for researchers and engineers in robotic mapping.

Design/methodology/approach

This paper focused on the research state of LiDAR-based SLAM for robotic mapping as well as a literature survey from the perspective of various LiDAR types and configurations.

Findings

This paper conducted a comprehensive literature review of the LiDAR-based SLAM system based on three distinct LiDAR forms and configurations. The authors concluded that multi-robot collaborative mapping and multi-source fusion SLAM systems based on 3D LiDAR with deep learning will be new trends in the future.

Originality/value

To the best of the authors’ knowledge, this is the first thorough survey of robotic mapping from the perspective of various LiDAR types and configurations. It can serve as a theoretical and practical guide for the advancement of academic and industrial robot mapping.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 September 2023

Ang Yang, Yu Cao, Yang Liu, Qingcheng Zeng and Fangqiang Xiu

Magnet spot is the primary method to develop the automated guided vehicle (AGV) guidance system for many automated container terminals (ACT). Aiming to improve the high…

Abstract

Purpose

Magnet spot is the primary method to develop the automated guided vehicle (AGV) guidance system for many automated container terminals (ACT). Aiming to improve the high flexibility of AGV operation in ACT, this paper aims to address the problem of technical stability leading to ACT production paralysis and propose a mini-terminal AGV robot for testing laser simultaneous location and mapping (SLAM)-based methods in ACT operation scenarios.

Design/methodology/approach

This study developed a physical simulation robot for terminal AGV operations, providing a platform to test technical solutions for applying laser navigation-related technologies in ACTs. Then, the terminal-AGV navigation system framework is designed to apply the laser-SLAM-based method in the physical simulation robot. Finally, the experiment is conducted in the terminal operation scenario to verify the feasibility of the proposed framework for lased-SLAM-based method testing and analyze the performance of the different mini-terminal AGV robots.

Findings

A series of experiments are conducted to analyze the performance of the proposed mini-terminal AGV robot for laser-SLAM-based method testing. The experimental results show the validity and effectiveness of the AGV robot and AGV navigation system framework with better local map matching, loopback and absolute positional error.

Originality/value

The proposed mini-terminal AGV robot and AGV navigation system framework can provide a platform for innovative laser-SLAM-based method testing in ACTs applications. Therefore, this study can effectively meet the high requirements of ACT for maturity and stability of the laser navigation technical.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 15