Search results

1 – 10 of over 2000
Article
Publication date: 19 October 2018

Hui Xiong, Youping Chen, Xiaoping Li and Bing Chen

Because submaps including a subset of the global map contain more environmental information, submap-based graph simultaneous localization and mapping (SLAM) has been studied by…

170

Abstract

Purpose

Because submaps including a subset of the global map contain more environmental information, submap-based graph simultaneous localization and mapping (SLAM) has been studied by many researchers. In most of those studies, helpful environmental information was not taken into consideration when designed the termination criterion of the submap construction process. After optimizing the graph, cumulative error within the submaps was also ignored. To address those problems, this paper aims to propose a two-level optimized graph-based SLAM algorithm.

Design/methodology/approach

Submaps are updated by extended Kalman filter SLAM while no geometric-shaped landmark models are needed; raw laser scans are treated as landmarks. A more reasonable criterion called the uncertainty index is proposed to combine with the size of the submap to terminate the submap construction process. After a submap is completed and a loop closure is found, a two-level optimization process is performed to minimize the loop closure error and the accumulated error within the submaps.

Findings

Simulation and experimental results indicate that the estimated error of the proposed algorithm is small, and the maps generated are consistent whether in global or local.

Practical implications

The proposed method is robust to sparse pedestrians and can be adapted to most indoor environments.

Originality/value

In this paper, a two-level optimized graph-based SLAM algorithm is proposed.

Details

Industrial Robot: An International Journal, vol. 45 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 November 2022

Ruiliang Feng, Jingchao Jiang, Atul Thakur and Xiangzhi Wei

Two-level support with Level 1 consisting of a set of beams and Level 2 consisting of a tree-like structure is an efficient support structure for extrusion-based additive…

142

Abstract

Purpose

Two-level support with Level 1 consisting of a set of beams and Level 2 consisting of a tree-like structure is an efficient support structure for extrusion-based additive manufacturing (EBAM). However, the literature for finding a slim two-level support is rare. The purpose of this paper is to design a lightweight two-level support structure for EBAM.

Design/methodology/approach

To efficiently solve the problem, the lightweight design problem is split into two subproblems: finding a slim Level 1 support and a slim Level 2 support. To solve these two subproblems, this paper develops three efficient metaheuristic algorithms, i.e. genetic algorithm (GA), genetic programming (GP) and particle swarm optimization (PSO). They are problem-independent and are powerful in global search. For the first subproblem, considering the path direction is a critical factor influencing the layout of Level 1 support, this paper solves it by splitting the overhang region into a set of subregions, and determining the path direction (vertical or horizontal) in each subregion using GA. For the second subproblem, a hybrid of two metaheuristic algorithms is proposed: the GP manipulates the topologies of the tree support, while the PSO optimizes the position of nodes and the diameter of tree branches. In particular, each chromosome is encoded as a single virtual tree for GP to make it easy to manipulate Crossover and Mutation. Furthermore, a local strategy of geometric search is designed to help the hybrid algorithm reach a better result.

Findings

Simulation results show that the proposed method is preferred over the existing method: it saves the materials of the two-level support up to 26.34%, the materials of the Level 1 support up to 6.62% and the materials of the Level 2 support up to 37.93%. The proposed local strategy of geometric search can further improve the hybrid algorithm, saving up to 17.88% of Level 2 support materials.

Research limitations/implications

The proposed approach for sliming Level 1 support requires the overhanging region to be a rectilinear polygon and the path direction in a subregion to be vertical or horizontal. This limitation limits the further material savings of the Level 1 support. In future research, the proposed approach can be extended to handle an arbitrary overhang region, each with several choices of path directions.

Practical implications

The details of how to integrate the proposed algorithm into the open-source program CuraEngine 4.13.0 is presented. This is helpful for the designers and manufacturers to practice on their own 3D printers.

Originality/value

The path planning of the overhang is a critical factor influencing the distribution of supporting points and will thus influence the shape of the support structure. Different from existing approaches that use single path directions, the proposed method optimizes the volume of the support structure by planning hybrid paths of the overhangs.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 May 2012

Piotr Putek, Guillaume Crevecoeur, Marian Slodička, Roger van Keer, Ben Van de Wiele and Luc Dupré

The purpose of this paper is to solve an inverse problem of structure recognition arising in eddy current testing (ECT) – type NDT. For this purpose, the space mapping (SM…

Abstract

Purpose

The purpose of this paper is to solve an inverse problem of structure recognition arising in eddy current testing (ECT) – type NDT. For this purpose, the space mapping (SM) technique with an extraction based on the Gauss‐Newton algorithm with Tikhonov regularization is applied.

Design/methodology/approach

The aim is to have a computationally fast recognition procedure of defects since the monitoring results in a large amount of data points that need to be analyzed by 3D eddy current model. According to the SM optimization, the finite element method (FEM) is used as a fine model, while the model based on an integral method such as the volume integral method (VIM) serves as a coarse model. This approach, being an example of a two‐level optimization method, allows shifting the optimization load from a time consuming and accurate model to the less precise but faster coarse surrogate.

Findings

The application of this method enables shortening of the evaluation time that is required to provide the proper parameter estimation of surface defects.

Research limitations/implications

In this work only the specific kinds of surface defects were considered. Therefore, the reconstruction of arbitrary shapes of defects when using real measurement data from ECT system can be treated in further research.

Originality/value

The paper investigated the eddy current inverse problem. According to aggressive space mapping method, a suitable coarse model is needed. In this case, for the purpose of 3D defect reconstruction, the reduced VIM approach was applied. From a practical view point, the authors demonstrated that the two‐level inversion procedures allow saving of up to 50 percent CPU time in comparison with the optimization by means of regularized Gauss‐Newton algorithm in the same FE model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 July 2011

Ibrahim A. Sultan and Azfar Kalim

This paper seeks to describe a design approach which can be used to manufacture better‐performing reciprocating compressors. This design approach relates the drive kinematic…

Abstract

Purpose

This paper seeks to describe a design approach which can be used to manufacture better‐performing reciprocating compressors. This design approach relates the drive kinematic characteristics to the thermodynamic performance of the compressor.

Design/methodology/approach

The presented approach is based on employing a stochastic optimisation algorithm to find the best piston trajectory within one cycle of operation and couple that with a gradient‐based technique to find the best dimensions of the mechanism which can realise this trajectory.

Findings

The mathematical models presented to implement the proposed design approach have been coded in a computer program which has been employed for simulation purposes. A case study given at the end of the paper asserts the usefulness of the proposed method and proves that a few percentage points increase in a defined set of performance indices has been gained from the optimisation exercise.

Research limitations/implications

The presented models are only relevant to reciprocating compressors.

Practical implications

The promising results obtained in this paper will lead to the creation of better performing and more reliable compressor drives, designed to fulfil a set of desired performance criteria.

Originality/value

The paper offers originality in two different aspects. The mechanism design process has been undertaken in full consideration to the thermodynamic performance of the compressor; and the coupling of the stochastic and the gradient‐based optimisation methods to produce the desired outcome.

Article
Publication date: 29 March 2022

Jian Lu, Suduo Xue, Renjie Liu and Xiongyan Li

In order to optimize SCSWIRC, the simplification and further optimization method is proposed. SCSWIRC's optimization includes two levels. The first level refers to simplifying…

Abstract

Purpose

In order to optimize SCSWIRC, the simplification and further optimization method is proposed. SCSWIRC's optimization includes two levels. The first level refers to simplifying structural system from the perspective of components; the second level refers to optimizing components' sectional areas from the perspective of mechanics. The first level aims to remove redundant components, and the second level aims to reduce structural self-weight based on the first level. The purpose of the paper is to simplify SCSWIRC's structural system and optimize structural self-weight and reduce construction forming difficulty.

Design/methodology/approach

Grid-jumping layout and multi-objective optimization method is used to simplify and further optimize Spatial cable-truss structure without inner ring cables (SCSWIRC). Grid-jumping layout is used to simplify remove redundant components, and multi-objective optimization method is used to reduce structural self-weight. The detailed solving process is given based on grid-jumping layout and multi-objective optimization method.

Findings

Take SCSWIRC with a span of 100m as an example to verify the feasibility and correctness of the simplification and further optimization method. The optimization results show that 12 redundant components are removed and the self-weight reduces by 3.128t from original scheme to grid-jumping layout scheme 1. The self-weight reduces from 36.007t to 28.231t and feasible coefficient decreases from 1.0 to 0.627 from grid-jumping layout scheme 1 to multi-objective optimization scheme. The simplification and further optimization can not only remove the redundant components and simplify structural system to reduce construction forming difficulty, but also optimize structural self-weight under considering structural stiffness to reduce project costs.

Originality/value

The proposed method firstly simplifies SCSWIRC and then optimizes the simplified SCSWIRC, which can solve the optimization problem from the perspective of components and mechanics. Meanwhile, the optimal section solving method can be used to obtain circular steel tube size with the optimal stiffness of the same areas. The proposed method successfully solves the problem of construction forming and project cost, which promotes the application of SCSWIRC in practical engineering.

Article
Publication date: 12 February 2020

Oussama Adjoul, Khaled Benfriha and Améziane Aoussat

This paper proposes a new simultaneous optimization model of the industrial systems design and maintenance. This model aims to help the designer in searching for technical…

Abstract

Purpose

This paper proposes a new simultaneous optimization model of the industrial systems design and maintenance. This model aims to help the designer in searching for technical solutions and the product architecture by integrating the maintenance issues from the design stage. The goal is to reduce the life-cycle cost (LCC) of the studied system.

Design/methodology/approach

Literature indicates that the different approaches used in the design for maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and the maintainability of a multicomponent system as well as the modeling of the dynamic maintenance. This article proposes to go further in the optimization of the product, by simultaneously characterizing the design, in terms of reliability and maintainability, as well as the dynamic planning of the maintenance operations. This combinatorial characterization is performed by a two-level hybrid algorithm based on the genetic algorithms.

Findings

The proposed tool offers, depending on the life-cycle expectation, the desired availability, the desired business model (sales or rental), simulations in terms of the LCCs, and so an optimal product architecture.

Research limitations/implications

In this article, the term “design” is limited to reliability properties, possible redundancies, component accessibility (maintainability), and levels of monitoring information.

Originality/value

This work is distinguished by the use of a hybrid optimization algorithm (two-level computation) using genetic algorithms. The first level is to identify an optimal design configuration that takes into account the LCC criterion. The second level consists in proposing a dynamic and optimal maintenance plan based on the maintenance-free operating period (MFOP) concept that takes into account certain criteria, such as replacement costs or the reliability of the system.

Article
Publication date: 7 September 2012

Ashish Ranjan Hota, Prabodh Bajpai and Dilip Kumar Pratihar

The purpose of this paper is to introduce a neural network‐based market agent, which develops optimal bidding strategies for a power generating company (Genco) in a day‐ahead…

Abstract

Purpose

The purpose of this paper is to introduce a neural network‐based market agent, which develops optimal bidding strategies for a power generating company (Genco) in a day‐ahead electricity market.

Design/methodology/approach

The problem of finding optimal bidding strategy for a Genco is formulated as a two‐level optimization problem. At the top level, the Genco aims at maximizing its total daily profit, and at the bottom level, the independent system operator obtains the power dispatch quantity for each market participant with the objective of maximizing the social welfare. The neural network is trained using a particle swarm optimization (PSO) algorithm with the objective of maximizing daily profit for the Genco.

Findings

The effectiveness of the proposed approach is established through several case studies on the benchmark IEEE 30‐bus test system for the day‐ahead market, with an hourly clearing mechanism and dynamically changing demand profile. Both block bidding and linear supply function bidding are considered for the Gencos and the variation of optimal bidding strategy with the change in demand is investigated. The performance is also evaluated in the context of the Brazilian electricity market with real market data and compared with the other methods reported in the literature.

Practical implications

Strategic bidding is a peculiar phenomenon observed in an oligopolistic electricity market and has several implications on policy making and mechanism design. In this work, the transmission line constraints and demand side bidding are taken into account for a more realistic simulation.

Originality/value

To the best of the authors' knowledge, this paper has introduced, for the first time, a neural network‐based market agent to develop optimal bidding strategies of a Genco in an electricity market. Simulation results obtained from the IEEE 30‐bus test system and the Brazilian electricity market demonstrate the superiority of the proposed approach, as compared to the conventional PSO‐based method and the genetic fuzzy rule‐based system approach, respectively.

Article
Publication date: 7 March 2016

Srinivas Vasista, Alessandro De Gaspari, Sergio Ricci, Johannes Riemenschneider, Hans Peter Monner and Bram van de Kamp

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR…

1042

Abstract

Purpose

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices.

Design/methodology/approach

The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept.

Findings

It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests.

Practical implications

The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts.

Originality/value

The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 March 2018

Stéphane Vivier

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine…

Abstract

Purpose

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine used as an integrated starter generator. This method makes it possible to carry out this design in a very efficient manner, in comparison with conventional optimization approaches.

Design/methodology/approach

The search for optimal conditions is achieved by the joint use of two multi-physics models of the machine to be optimized. The former models most finely the physical functioning of the machine; it is called “fine model”. The second model describes the same physical phenomena as the fine model but must be much quicker to evaluate. Thus, to minimize its evaluation time, it is necessary to simplify it considerably. It is called “coarse model”. The lightness of the coarse model allows it to be used intensively by conventional optimization algorithms. On the other hand, the fine reference model makes it possible to recalibrate the results obtained from the coarse model at any instant, and mainly at the end of each classical optimization. The difference in definition between fine and coarse models implies that these two models do not give the same output values for the same input configuration. The approach described in this study proposes to correct the values of the coarse model outputs by constructing an adjustment (correcting) response surface. This gives the name to this method. It then becomes possible to have the entire load of the optimization carried over to the coarse model adjusted by the addition of this correction response surface.

Findings

The application of this method shows satisfactory results, in particular in comparison with those obtained with a traditional optimization approach based on a single (fine) model. It thus appears that the approach by CRSM makes it possible to converge much more quickly toward the optimal configurations. Also, the use of response surfaces for optimization makes it possible to capitalize the modeling data, thus making it possible to reuse them, if necessary, for subsequent optimal design studies. Numerous tests show that this approach is relatively robust to the variations of many important functioning parameters.

Originality/value

The CRSM technique is an indirect multi-model optimization method. This paper presents the application of this relatively undeveloped optimization approach, combining the features and benefits of (Indirect) efficient global optimization techniques and (multi-model) space mapping methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 June 2008

Prabodh Bajpai and Sri Niwas Singh

The purpose of this paper is to develop an optimal bidding strategy for a generation company (GenCo) in the network constrained electricity markets and to analyze the impact of…

Abstract

Purpose

The purpose of this paper is to develop an optimal bidding strategy for a generation company (GenCo) in the network constrained electricity markets and to analyze the impact of network constraints and opponents bidding behavior on it.

Design/methodology/approach

A bi‐level programming (BLP) technique is formulated in which upper level problem represents an individual GenCo payoff maximization and the lower level represents the independent system operator's market clearing problem for minimizing customers' payments. The objective function of BLP problem used for bidding strategy by economic withholding is highly nonlinear, and there are complementarity terms to represent the market clearing. Fuzzy adaptive particle swarm optimization (FAPSO), which is a modern heuristic approach, is applied to obtain the global solution of the proposed BLP problem for single hourly and multi‐hourly market clearings. Opponents' bidding behavior is modeled with probabilistic estimation.

Findings

It is very difficult to obtain the global solution of this BLP problem using the deterministic approaches, even for a single hourly market clearing. However, the effectiveness of this new heuristic approach (FAPSO) has been established with four simulation cases on IEEE 30‐bus test system considering multi‐block bidding and multi‐hourly market clearings. The joint effect of network congestion and strategic bidding by opponents offer additional opportunities of increase in payoff of a GenCo.

Practical implications

FAPSO having dynamically adjusted particle swarm optimization inertia weight uses fuzzy evaluation to effectively follow the frequently changing conditions in the successive trading sessions of a real electricity market. This approach is applied to find the optimal bidding strategy of a GenCo competing with five GenCos in IEEE 30‐bus test system.

Originality/value

This paper is possibly the first attempt to evaluate an optimal bidding strategy for a GenCo through economic withholding in a network constrained electricity market using FAPSO.

Details

International Journal of Energy Sector Management, vol. 2 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 10 of over 2000