Search results

1 – 10 of 53
Article
Publication date: 9 November 2022

Mustafa Dallı and Asena Soyluk

The aim of this study is to question the relationship between architectural ethical codes and faults in earthquakes. Earthquakes have devastating effects on all societies in…

Abstract

Purpose

The aim of this study is to question the relationship between architectural ethical codes and faults in earthquakes. Earthquakes have devastating effects on all societies in history and today. And the relationship and importance of the architect and building, one of the most important roles of these destructive effects, is once again revealed in every earthquake. Although there are some restrictions or warnings for architects and the architectural profession to reduce this destructive effect in many regulations and ethical codes, it is possible to see the defects caused by architectural design and the destruction caused by these defects in every new earthquake.

Design/methodology/approach

In this study, the most destructive earthquakes in Turkey in the past 20 years (Bingöl, Van, Elazig and Izmir) and the 1999 Marmara earthquake, which was the most destructive earthquake in Turkey’s recent history, and the damages occurred in these earthquakes and their causes were examined. Although the scope of the study is “destructive earthquakes that have occurred in the past 20 years in Turkey”, the Marmara Earthquake, which occurred in 1999, when the destructive effect of the earthquake was seen the most and architectural design errors were intense, was also included in the scope of the study. And to have a more comprehensive understanding of how these defects are examined in terms of ethical codes and to make a more comprehensive comparison, ethical codes from different countries in the world have been researched and a review has been made on topics such as public welfare, human rights and raising the standard of the profession.

Findings

This study concludes by reviewing the key factors learned from the examined ethical codes of different countries. Finding ethical codes of different countries was challenging to gain approval. In addition, the study ends with recommendations in terms of questioning the regulations and education curriculum relations on a country basis.

Originality/value

This study, which targets architect candidates who carry out the profession of architecture and continue their architectural education, evaluates the architectural design flaws seen in earthquakes through ethical codes and forms a basis for further studies.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 17 February 2022

Md. Habibur Rahman Sobuz, Md. Montaseer Meraz, Ayan Saha, Abu Sayed Mohammad Akid, Noor Md. Sadiqul Hasan, Mizanoor Rahman and Md. Abu Safayet

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional…

Abstract

Purpose

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional mathematical models are used to examine the responses of multistory flexibly connected frames subjected to earthquake excitations.

Design/methodology/approach

This paper examined a G + 50 multi-storied high-rise structure, which is analyzed using different combinations of moment resistant frames, shear walls, seismic outrigger systems and seismic dampers to observe the effectiveness during ground motion against soft soil conditions. The damping coefficients of added dampers, providing both upper and lower levels are taken into consideration. A finite element modeling and analysis is generated. Then the nature of the structure exposed to ground motion is captured with response spectrum analysis, using BNBC-2020 for four different seismic zones in Bangladesh.

Findings

The response of the structure is investigated according to the amplitude of the displacements, drifts, base shear, stiffness and torsion. The numerical results indicate that adding dampers at the base level can be the most effective against seismic control. However, placing an outrigger bracing system at the middle and top end with shear wall can be the most effective for controlling displacements and drifts.

Originality/value

The response of high-rise structures to seismic forces in Bangladesh’s soft soil conditions is examined at various levels in this study. This study is an original research which contributes to the knowledge to build earthquake resisting high-rises in Bangladesh.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 December 2022

Raghuraman T., Veerappan AR. and Shanmugam S.

This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit…

Abstract

Purpose

This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit analysis with the consideration of small geometry change effects.

Design/methodology/approach

The limit pressure of 90° pipe bends with ovality and thinning has been evaluated by geometric linear FE approach. Internal pressure was applied to the inner surface of the FE pipe bend models. When von-Mises stress equals or just exceeds the yield strength of the material, the corresponding pressure was considered as the limit pressure for all models. The current FE methodology was evaluated by the theoretical solution which has been published in the literature.

Findings

Ovality and thinning produced a significant effect on thin-walled pipe bends. The ovality weakened pipe bend performance at any constant thinning, while thinning improved the performance of the bend portion at any constant ovality. The limit pressure of pipe bends under internal pressure increased with an increase in the bend ratio and decreased with an increase in the pipe ratio. With a simultaneous increment in bend radius and reduction in wall thickness, there was a reduction in limit pressure. A new closed-form empirical solution was proposed to evaluate limit pressure, which was validated with published experimental data.

Originality/value

The influences of structural deformation (ovality and thinning) in the limit pressure analysis of 90° pipe bends have not been investigated and reported.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 28 February 2023

Victor Pimentel and Carlo A. Mora-Monge

This study aims to benchmark the operational efficiency of fifty-eight public hospitals across Mexico between 2015 and 2018 and identifies the most critical inputs affecting their…

Abstract

Purpose

This study aims to benchmark the operational efficiency of fifty-eight public hospitals across Mexico between 2015 and 2018 and identifies the most critical inputs affecting their efficiency. In doing so, the study analyzes the impact of policy changes in the Mexican healthcare system introduced in recent years.

Design/methodology/approach

To measure the operational efficiency of Mexican public hospitals, data envelopment analysis (DEA) window analysis variable returns to scale (VRS) methodology using longitudinal data collected from the National Institute for Transparency and Access to Information (IFAI). Hospital groups are developed and compared using a categorization approach according to their average and most recent efficiency.

Findings

Results show that most of the hospitals in the study fall in the moving ahead category. The hospitals in the losing momentum or falling behind categories are mostly large units. Hospitals with initially low efficiency scores have either increased their efficiency or at least maintained a steady improvement. Finally, the findings indicate that most hospitals classified as moving ahead focused on a single care area (cancer, orthopedic care, child care and trauma).

Research limitations/implications

This study examined the technical efficiency of the Mexican healthcare system over a four-year period. Contrary to conventional belief, results indicate that most public Mexican hospitals are managed efficiently. However, recent changes in public and economic policies that came into effect in the current administration (2018) will likely have long-lasting effects on the hospitals' operational efficiency, which could impact the results of this study.

Originality/value

To the best of authors’ knowledge, this is the first study that examines the efficiency of the complex Mexican healthcare system using longitudinal data.

Details

Benchmarking: An International Journal, vol. 31 no. 2
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 7 July 2023

Elda du Toit

According to the Association of Certified Fraud Examiners, financial statement fraud represents the smallest amount of fraud cases but results in the greatest monetary loss. The…

5556

Abstract

Purpose

According to the Association of Certified Fraud Examiners, financial statement fraud represents the smallest amount of fraud cases but results in the greatest monetary loss. The researcher previously investigated the characteristics of financial statement fraud and determined the presence of 16 fraud indicators. The purpose of this study is to establish whether investors and other stakeholders can detect and identify financial statement fraud using these characteristics in an analysis of a company’s annual report.

Design/methodology/approach

This study analyses a financial statement fraud case, using the same techniques that were previously applied, including horizontal, vertical and ratio analysis. These are preferred because stakeholders have relatively easy access to them.

Findings

The findings show several fraud characteristics, with a few additional ones not previously found prevalent. Financial statement fraud thus tends to differ between cases. It is also easier to detect and identify fraud indicators ex post facto.

Originality/value

This study is a practical case showing that financial statement fraud can be detected and identified in the financial statements of companies that commit fraud.

Details

Journal of Financial Crime, vol. 31 no. 2
Type: Research Article
ISSN: 1359-0790

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 28 September 2023

Vicente-Segundo Ruiz-Jacinto, Karina-Silvana Gutiérrez-Valverde, Abrahan-Pablo Aslla-Quispe, José-Manuel Burga-Falla, Aldo Alarcón-Sucasaca and Yersi-Luis Huamán-Romaní

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite…

Abstract

Purpose

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.

Design/methodology/approach

This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.

Findings

The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.

Originality/value

The authors confirm the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 January 2024

Tim Gruchmann, Gernot M. Stadtfeld, Matthias Thürer and Dmitry Ivanov

Experiencing more frequent, system-wide disruptions, such as pandemics and geopolitical conflicts, supply chains can be largely destabilized by a lack of materials, services or…

Abstract

Purpose

Experiencing more frequent, system-wide disruptions, such as pandemics and geopolitical conflicts, supply chains can be largely destabilized by a lack of materials, services or components. Supply chain resilience (SCRES) constitutes the network ability to recover after and survive during such unexpected events. To enhance the understanding of SCRES as a system-wide quality, this study tests a comprehensive SCRES model with data from multiple industries.

Design/methodology/approach

The study proposes a theoretical framework conceptualizing SCRES as system quality, extending the classical proactive/reactive taxonomy by multiple system states consisting of the supply system properties, behaviors and responses to disruptions. Underlying hypotheses were tested using an online survey. The sample consists of 219 responses from German industries. Maximum likelihood structural equation modeling (ML-SEM) and moderation analysis were used for analyzing the survey data. The study was particularly designed to elaborate on supply chain theory.

Findings

Two pathways of parallel SCRES building were identified: proactive preparedness via anticipation and reactive responsiveness via agility. Both system responses are primarily built simultaneously rather than successively. The present study further provides empirical evidence on the central role of visibility and velocity in achieving comprehensive SCRES, while flexibility only exerts short-term support after a disruption. The study additionally points to potential “spillover effects” such as the vital role of proactive SCRES in achieving reactive responsiveness.

Originality/value

The present study confirms and expands existing theories on SCRES. While stressing the multidimensionality of SCRES, it theorizes the (inter-)temporal evolution of a system and offers practical guidelines for SCRES building in various industrial contexts. It thus supports the transformation toward more resilient and viable supply chains, contributing to the increasing efforts of middle-range theory building to achieve an overarching theory. The study also points to potential future research avenues.

Details

International Journal of Physical Distribution & Logistics Management, vol. 54 no. 1
Type: Research Article
ISSN: 0960-0035

Keywords

Access

Year

Last 3 months (53)

Content type

Article (53)
1 – 10 of 53