Search results

1 – 10 of over 2000
Article
Publication date: 26 March 2024

Hesam Ketabdari, Amir Saedi Daryan, Nemat Hassani and Mohammad Safi

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Abstract

Purpose

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Design/methodology/approach

For this purpose, for the sake of verification, first, a numerical model is built using ABAQUS software and then exposed to earthquakes and high temperatures. Afterward, the effects of a series of parameters, such as gusset plate thickness, gap width, steel grade, vertical load value and presence of the stiffeners, are evaluated on the behavior of the connection in the PEF conditions.

Findings

Based on the results obtained from the parametric study, all parameters effectively played a role against the seismic loads, although, when exposed to fire, it was found that the vertical load value and presence of the stiffener revealed a great contribution and the other parameters could not significantly affect the connection performance. Finally, to develop the modeling and further study the performance of the connection, the 4 and 8-story frames are subjected to 11 accelerograms and 3 different fire scenarios. The findings demonstrate that high temperatures impose rotations on the structure, such that the story drifts were changed compared to the post-earthquake drift values.

Originality/value

The obtained results can be used by engineers to design the GPMC for the combined action of earthquake and fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 February 2022

Md. Habibur Rahman Sobuz, Md. Montaseer Meraz, Ayan Saha, Abu Sayed Mohammad Akid, Noor Md. Sadiqul Hasan, Mizanoor Rahman and Md. Abu Safayet

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional…

Abstract

Purpose

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional mathematical models are used to examine the responses of multistory flexibly connected frames subjected to earthquake excitations.

Design/methodology/approach

This paper examined a G + 50 multi-storied high-rise structure, which is analyzed using different combinations of moment resistant frames, shear walls, seismic outrigger systems and seismic dampers to observe the effectiveness during ground motion against soft soil conditions. The damping coefficients of added dampers, providing both upper and lower levels are taken into consideration. A finite element modeling and analysis is generated. Then the nature of the structure exposed to ground motion is captured with response spectrum analysis, using BNBC-2020 for four different seismic zones in Bangladesh.

Findings

The response of the structure is investigated according to the amplitude of the displacements, drifts, base shear, stiffness and torsion. The numerical results indicate that adding dampers at the base level can be the most effective against seismic control. However, placing an outrigger bracing system at the middle and top end with shear wall can be the most effective for controlling displacements and drifts.

Originality/value

The response of high-rise structures to seismic forces in Bangladesh’s soft soil conditions is examined at various levels in this study. This study is an original research which contributes to the knowledge to build earthquake resisting high-rises in Bangladesh.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 18 September 2023

Mohammad Boshagh, Mojtaba Labibzadeh, Farhad Hosseinlou and Abbas Rezaeian

In this study, the application of a novel combined steel curved damper (SCD) and steel plate shear wall (SPSW) system in the 5-, 10- and 15-storey steel moment-resisting frames…

Abstract

Purpose

In this study, the application of a novel combined steel curved damper (SCD) and steel plate shear wall (SPSW) system in the 5-, 10- and 15-storey steel moment-resisting frames (SMR) subjected to earthquake excitation has been investigated. The proposed system is called here as the SMR-WD (steel moment resisting–wall damper).

Design/methodology/approach

At the beginning of this research, an SMR-W and an SMR-D are separately modeled in ABAQUS software and verified against the available experimental data. After that, three different heights SMR-WD systems (5-, 10- and 15-storey) are designed and simulated. Then, their performances are examined and compared to the corresponding SMR-W under the effects of six actual earthquake records.

Findings

The obtained results show that the proposed system increases the mean values of the base shear for 5-, 10- and 15-storey SMR-WD equal to 27, 20.15 and 16.51%, respectively compared to the corresponding SMR-W. Moreover, this system reduces the drift of the floors so that the reduction in the average values of maximum drift for 5-, 10- and 15-storey SMR-WD is equal to 10, 7 and 29%, respectively with respect to the corresponding SMR-W. The results also reveal that the considered system dissipates more energy than SMR-W so that the increase in the mean values of the energy absorption for 5-, 10- and 15-storey SMR-WD is 30.8, 25.6 and 41.3%, respectively when compared to the SMR-W. Furthermore, it is observed that SMR-WD has a positive effect on the seismic performance of the link beams and panel zones of the frames. By increasing the height of the structure in the SMR-WD, the energy dissipation and base shear force increases and the drift of floors decreases. Hereupon, the proposed SMR-WD system is more useful for tall buildings than SMR-W frames.

Originality/value

For the first time, the application of a novel combined steel curved damper (SCD) and steel plate shear wall (SPSW) system in the 5-, 10- and 15-storey steel moment-resisting frames (SMR) subjected to earthquake excitation has been investigated.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 July 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

The objective of the study is to examine the response of reinforced concrete (RC) structures subjected to Near-Fault Ground Motions (NFGM) and highlight the importance of…

115

Abstract

Purpose

The objective of the study is to examine the response of reinforced concrete (RC) structures subjected to Near-Fault Ground Motions (NFGM) and highlight the importance of considering various factors including the influence of the relative geographical position of near-fault sites that can affect the structural response during an earthquake.

Design/methodology/approach

In this paper, the response of a four-storey RC building subjected to NFGMs with varied characteristics like hanging wall and footwall in conjunction with directivity and the effect of pulse-like ground motions with rupture direction are investigated to understand the combined influence of these factors on the behavior of the structure. Furthermore, the capacity and demand of the structural element are investigated for computing the performance ratio.

Findings

Results from this study indicate that the most unfavorable combinations for structural damage due to near-fault ground motion are the hanging wall with forward rupture, the fault normal component of ground motions, and pulse-like ground motions with forward directivity.

Originality/value

The results from this study provide valuable insight into the response of RC structures subjected to NFGM and highlight the importance of considering various factors that can affect the structural response during an earthquake. Moreover, the computation of capacity and demand of the critical beam indicates exceedance of desired limits, resulting in the early deterioration of the structural elements. Finally, the analytical analysis from the present study confirms that the hanging wall with forward ruptures, pulse-like motions, and fling steps are the most unfavorable combinations for seismic structural damage.

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2018

Ehsan Bazarchi, Yousef Hosseinzadeh and Parinaz Panjebashi Aghdam

It is common practice in structural engineering to assume floor diaphragms infinitely stiff in their own plane. But, most of the code provisions lack clarity and unity in…

Abstract

Purpose

It is common practice in structural engineering to assume floor diaphragms infinitely stiff in their own plane. But, most of the code provisions lack clarity and unity in categorising floor diaphragms and discussing their behaviour based on the seismic response of the structures. Besides, although many of these code provisions have presented simple techniques and formulations for determining the level of flexibility in floor diaphragms, the implementation of these techniques on more complex floor systems such as the steel-deck composite floors is still under question. The paper aims to discuss these issues.

Design/methodology/approach

In this study, an equivalent concrete floor is employed as a representative of in-plane diaphragm action of steel-deck composite floor, using simple modelling techniques in SAP2000 and the results are validated by complex structural models developed in ABAQUS. Afterwards, the equivalent floor is inserted to 3, 5 and 7 storey steel structures with 2, 3 and 5 plan aspect ratios in two categories of structures with rigid diaphragms and analogous structures with flexible diaphragms and the responses are compared to each other.

Findings

The results show that the proposed technique is an effective method for evaluating the diaphragm action of steel-deck composite floors. Additionally, it is concluded that, the boundary values of plan aspect ratio equal to 3 and λ coefficient equal to 0.5 in steel-deck composite floors, mentioned in code provisions for categorising diaphragms, are not always conservative and need to be scrutinised.

Originality/value

The proposed methodology provides simple framework for assessing the effects of in-plane flexibility of steel-deck composite on seismic response of steel structures.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Book part
Publication date: 30 April 2024

Lilith Green and Carol Rambo

Gender-diverse people experience unique cultural and interpersonal stigma in mainstream society and sometimes within their own communities; they face allegations of inauthenticity…

Abstract

Gender-diverse people experience unique cultural and interpersonal stigma in mainstream society and sometimes within their own communities; they face allegations of inauthenticity based on their nonconformity to either cisnormative or transnormative gender regimes. Based on 21 in-depth life history interviews, we unveil the intricate interactional process of negotiating identity and authenticity in the biographical work of gender-diverse individuals. In this study, gender-diverse people engaged in a “gender audit” with their gender-diverse interviewer. Gender audits yield verbal performances of gender with oneself and others. Ambiguity was “accounted for” or “embraced and created” in their biographical work to organize their life stories and undermine binary essentialism – a discourse that was “discursively constraining.” Gender audits took place in participants' day-to-day lives, either through self-audits, questioning from others, or both. In the final analysis, we assert that we all engage in gender auditing. Gender audits are intersubjective sites of domination, subordination, resistance, and social change. Gender diversity, then, can be viewed as a product of gender in flux.

Details

Symbolic Interaction and Inequality
Type: Book
ISBN: 978-1-83797-689-8

Keywords

Article
Publication date: 30 August 2011

Tugba İnan and Koray Korkmaz

The purpose of this research is to show significant points which can be used in the architectural design process by investigating the basic principles of earthquake resistant…

Abstract

Purpose

The purpose of this research is to show significant points which can be used in the architectural design process by investigating the basic principles of earthquake resistant design (ERD) in a deductive format and to contribute to the architectural perception in ERD.

Design/methodology/approach

First, the structural irregularity types are examined depending on the rules defined in the Turkish Earthquake Code, 2007 (TEC). Then, architectural design failures related to earthquake resistance of buildings under earthquake loading are visualized and solution suggestions in literature are described in detail by supported drawings.

Findings

The problems causing structural irregularities are investigated deeply with given solutions in literature. It is obtained that the significant factors affecting the earthquake performance of structures are: architectural form, structural configuration, slenderness ratio, the location and rate of floor openings, projection rates and symmetry, rigidity and strength differences between floors, short columns, pounding effect. Social implications – The practical design decision rules can contribute to the phenomena of earthquake resistant architectural design and can encourage adoption of these rules in building industry.

Originality/value

This study aims to gain an understanding of the problems in projects in terms of structural irregularities, and then manage to solve the problems using problem‐oriented approaches. The suggested solutions can be adopted and applied to future projects for designing earthquake resistant buildings.

Details

Structural Survey, vol. 29 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

2974

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 13 August 2018

Mohammad Zaman Kabir, Parisa Shadan and Hossein Kabir

The purpose of this paper is to examine the dynamical behavior of a combined three-story building with a 3D panel wall system including a soft story irregularity at the very first…

Abstract

Purpose

The purpose of this paper is to examine the dynamical behavior of a combined three-story building with a 3D panel wall system including a soft story irregularity at the very first floor by doing a shaking table test. The upper two stories of the model were made out of the 3D panel system, while the first story was constructed only with moment-resisting RC frames.

Design/methodology/approach

Besides the experimental program, the numerical finite element method was implemented for the verification of the experimental results. In the experimental study, the building responses including the floors’ accelerations and drifts were considered, and the seismically vulnerable zones were reported and compared with that provided by the implemented FEM-based program.

Findings

After the shaking table test, the major cracks appeared at the end of each column and beam-column connections. Some negligible cracks were also visible around the beam-panel connections. However, no crack was seen in the upper stories. The lateral deformation of the studied building was investigated under the applied ELC25 and NGH135 earthquakes. Under the both aforementioned ground motion records, the first story drift was larger than two upper stories, since the moment-resisting frame was a soft story. The hysteretic relation between the shear and displacement for each story was studied. Under the applied ELC25 earthquake, the system remains linear and the stiffness of each story is obtainable as well.

Originality/value

This is the first time when the dynamical behavior of a combined system is studied and tested experimentally and numerically for data validation. Regarding the response of the assumed combined structure, the 3D panel system has a remarkable rigidity with respect to the conventional RC frames, also 3D panels have less weight than the moment-resisting frames.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 September 2016

Negar Elhami Khorasani, Maria Garlock and Paolo Gardoni

This paper aims to develop a framework to assess the reliability of structures subject to a fire following an earthquake (FFE) event. The proposed framework is implemented in one…

Abstract

Purpose

This paper aims to develop a framework to assess the reliability of structures subject to a fire following an earthquake (FFE) event. The proposed framework is implemented in one seamless programming environment and is used to analyze an example nine-story steel moment-resisting frame (MRF) under an FFE. The framework includes uncertainties in load and material properties at elevated temperatures and evaluates the MRF performance based on various limit states.

Design/methodology/approach

Specifically, this work models the uncertainties in fire load density, yield strength and modulus of elasticity of steel. The location of fire compartment is also varied to investigate the effect of story level (lower vs higher) and bay location (interior vs exterior) of the fire on the post-earthquake performance of the frame. The frame is modeled in OpenSees to perform non-linear dynamic, thermal and reliability analyses of the structure.

Findings

Results show that interior bays are more susceptible than exterior bays to connection failure because of the development of larger tension forces during the cooling phase of the fire. Also, upper floors in general are more probable to reach specified damage states than lower floors because of the smaller beam sizes. Overall, results suggest that modern MRFs with a design that is governed by inter-story drifts have enough residual strength after an earthquake so that a subsequent fire typically does not lead to results significantly different compared to those of an event where the fire occurs without previous seismic damage. However, the seismic damage could lead to larger fire spread, increased danger to the building as a whole and larger associated economic losses.

Originality/value

Although the paper focuses on FFE, the proposed framework is general and can be extended to other multi-hazard scenarios.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 2000