Search results

1 – 10 of 158
Article
Publication date: 31 May 2024

Haylim Chha and Yongbo Peng

Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee…

Abstract

Purpose

Contemporary stochastic optimal control by synergy of the probability density evolution method (PDEM) and conventional optimal controller exhibits less capability to guarantee economical energy consumption versus control efficacy when non-stationary stochastic excitations drive hysteretic structures. In this regard, a novel multiscale stochastic optimal controller is invented based on the wavelet transform and the PDEM.

Design/methodology/approach

For a representative point, a conventional control law is decomposed into sub-control laws by deploying the multiresolution analysis. Then, the sub-control laws are classified into two generic control laws using resonant and non-resonant bands. Both frequency bands are established by employing actual natural frequency(ies) of structure, making computed efforts depend on actual structural properties and time-frequency effect of non-stationary stochastic excitations. Gain matrices in both bands are then acquired by a probabilistic criterion pertaining to system second-order statistics assessment. A multi-degree-of-freedom hysteretic structure driven by non-stationary and non-Gaussian stochastic ground accelerations is numerically studied, in which three distortion scenarios describing uncertainties in structural properties are considered.

Findings

Time-frequency-dependent gain matrices sophisticatedly address non-stationary stochastic excitations, providing efficient ways to independently suppress vibrations between resonant and non-resonant bands. Wavelet level, natural frequency(ies), and ratio of control forces in both bands influence the scheme’s outcomes. Presented approach outperforms existing approach in ensuring trade-off under uncertainty and randomness in system and excitations.

Originality/value

Presented control law generates control efforts relying upon resonant and non-resonant bands, and deploys actual structural properties. Cost-function weights and probabilistic criterion are promisingly developed, achieving cost-effectiveness of energy demand versus controlled structural performance.

Article
Publication date: 14 March 2023

Qian Zhang and Huiyong Yi

With the evolution of the turbulent environment constantly triggering the emergence of a trust crisis between organizations, how can university–industry (U–I) alliances respond to…

Abstract

Purpose

With the evolution of the turbulent environment constantly triggering the emergence of a trust crisis between organizations, how can university–industry (U–I) alliances respond to the trust crisis when conducting green technology innovation (GTI) activities? This paper aims to address this issue.

Design/methodology/approach

The authors examined the process of trust crisis damage, including trust first suffering instantaneous impair as well as subsequently indirectly affecting GTI level, and ultimately hurting the profitability of green innovations. In this paper, a piecewise deterministic dynamic model is deployed to portray the trust and the GTI levels in GTI activities of U–I alliances.

Findings

The authors analyze the equilibrium results under decentralized and centralized decision-making modes to obtain the following conclusions: Trust levels are affected by a combination of hazard and damage (short and long term) rates, shifting from steady growth to decline in the presence of low hazard and damage rates. However, the GTI level has been growing steadily. It is essential to consider factors such as the hazard rate, the damage rate in the short and long terms, and the change in marginal profit in determining whether to pursue an efficiency- or recovery-friendly strategy in the face of a trust crisis. The authors found that two approaches can mitigate trust crisis losses: implementing a centralized decision-making mode (i.e. shared governance) and reducing pre-crisis trust-building investments. This study offers several insights for businesses and academics to respond to a trust crisis.

Research limitations/implications

The present research can be extended in several directions. Instead of distinguishing attribution of trust crisis, the authors use hazard rate, short- and long-term damage rates and change in marginal profitability to distinguish the scale of trust crises. Future scholars can further add an attribution approach to enrich the classification of trust crises. Moreover, the authors only consider trust crises because of unexpected events in a turbulent environment; in fact, a trust crisis may also be a plateauing process, yet the authors do not study this situation.

Practical implications

First, the authors explore what factors affect the level of trust and the level of GTI when a trust crisis occurs. Second, the authors provide guidelines on how businesses and academics can coordinate their trust-building and GTI efforts when faced with a trust crisis in a turbulent environment.

Originality/value

First, the interaction between psychology and innovation management is explored in this paper. Although empirical studies have shown that trust in U–I alliances is related to innovation performance, and scholars have developed differential game models to portray the GTI process, building a differential game model to explore such an interaction is still scarce. Second, the authors incorporate inter-organizational trust level into the GTI level in university–industry collaboration, applying differential equations to portray the trust building and GTI processes, respectively, to reveal the importance of trust in CTI activities. Third, the authors establish a piecewise deterministic dynamic game model wherein the impact of crisis shocks is not equal to zero, which is inconsistent with most previous studies of Brownian motion.

Details

Nankai Business Review International, vol. 15 no. 2
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 28 June 2024

Calum G. Turvey, Morgan Paige Mastrianni, Shuxin Liu and Chenyan Gong

This paper investigates the relationship between climate finance and climate ergodicity. More specifically the paper examines how climate ergodicity as measured by a…

Abstract

Purpose

This paper investigates the relationship between climate finance and climate ergodicity. More specifically the paper examines how climate ergodicity as measured by a mean-reverting Ornstein–Uhlenbeck process affects the value of climate-linked bonds.

Design/methodology/approach

Bond valuation is evaluated using Monte Carlo methods of the Ornstein–Uhlenbeck process. The paper describes climate risk in terms of the Hurst coefficient and derives a direct linkage between the Ornstein–Uhlenbeck process and the Hurst measure.

Findings

We use the Ornstein–Uhlenbeck mean reversion relationship in its OLS form to estimate Hurst coefficients for 5 × 5° grids across the US for monthly temperature and precipitation. We find that the ergodic property holds with Hurst coefficients between 0.025 and 0.01 which implies increases in climate standard deviation in the range of 25%–50%.

Practical implications

The approach provides a means to stress-test the bond prices to uncover the probability distribution about the issue value of bonds. The methods can be used to price or stress-test bonds issued by firms in climate sensitive industries. This will be of particular interest to the Farm Credit System and the Farm Credit Funding Corporation with agricultural loan portfolios subject to spatial climate risks.

Originality/value

This paper examines bond issues under conditions of rising climate risks using Hurst coefficients derived from an Ornstein–Uhlenbeck process.

Details

Agricultural Finance Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0002-1466

Keywords

Article
Publication date: 10 July 2024

Mohammad Ghalambaz, Mikhail A. Sheremet, Mohammed Arshad Khan, Zehba Raizah and Jana Shafi

This study aims to explore the evolving field of physics-informed neural networks (PINNs) through an analysis of 996 records retrieved from the Web of Science (WoS) database from…

Abstract

Purpose

This study aims to explore the evolving field of physics-informed neural networks (PINNs) through an analysis of 996 records retrieved from the Web of Science (WoS) database from 2019 to 2022.

Design/methodology/approach

WoS database was analyzed for PINNs using an inhouse python code. The author’s collaborations, most contributing institutes, countries and journals were identified. The trends and application categories were also analyzed.

Findings

The papers were classified into seven key domains: Fluid Dynamics and computational fluid dynamics (CFD); Mechanics and Material Science; Electromagnetism and Wave Propagation; Biomedical Engineering and Biophysics; Quantum Mechanics and Physics; Renewable Energy and Power Systems; and Astrophysics and Cosmology. Fluid Dynamics and CFD emerged as the primary focus, accounting for 69.3% of total publications and witnessing exponential growth from 22 papers in 2019 to 366 in 2022. Mechanics and Material Science followed, with an impressive growth trajectory from 3 to 65 papers within the same period. The study also underscored the rising interest in PINNs across diverse fields such as Biomedical Engineering and Biophysics, and Renewable Energy and Power Systems. Furthermore, the focus of the most active countries within each application category was examined, revealing, for instance, the USA’s significant contribution to Fluid Dynamics and CFD with 319 papers and to Mechanics and Material Science with 66 papers.

Originality/value

This analysis illuminates the rapidly expanding role of PINNs in tackling complex scientific problems and highlights its potential for future research across diverse domains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 February 2024

Felipa de Mello-Sampayo

This survey explores the application of real options theory to the field of health economics. The integration of options theory offers a valuable framework to address these…

Abstract

Purpose

This survey explores the application of real options theory to the field of health economics. The integration of options theory offers a valuable framework to address these challenges, providing insights into healthcare investments, policy analysis and patient care pathways.

Design/methodology/approach

This research employs the real options theory, a financial concept, to delve into health economics challenges. Through a systematic approach, three distinct models rooted in this theory are crafted and analyzed. Firstly, the study examines the value of investing in emerging health technology, factoring in future advantages, associated costs and unpredictability. The second model is patient-centric, evaluating the choice between immediate treatment switch and waiting for more clarity, while also weighing the associated risks. Lastly, the research assesses pandemic-related government policies, emphasizing the importance of delaying decisions in the face of uncertainties, thereby promoting data-driven policymaking.

Findings

Three different real options models are presented in this study to illustrate their applicability and value in aiding decision-makers. (1) The first evaluates investments in new technology, analyzing future benefits, discount rates and benefit volatility to determine investment value. (2) In the second model, a patient has the option of switching treatments now or waiting for more information before optimally switching treatments. However, waiting has its risks, such as disease progression. By modeling the potential benefits and risks of both options, and factoring in the time value, this model aids doctors and patients in making informed decisions based on a quantified assessment of potential outcomes. (3) The third model concerns pandemic policy: governments can end or prolong lockdowns. While awaiting more data on the virus might lead to economic and societal strain, the model emphasizes the economic value of deferring decisions under uncertainty.

Practical implications

This research provides a quantified perspective on various decisions in healthcare, from investments in new technology to treatment choices for patients to government decisions regarding pandemics. By applying real options theory, stakeholders can make more evidence-driven decisions.

Social implications

Decisions about patient care pathways and pandemic policies have direct societal implications. For instance, choices regarding the prolongation or ending of lockdowns can lead to economic and societal strain.

Originality/value

The originality of this study lies in its application of real options theory, a concept from finance, to the realm of health economics, offering novel insights and analytical tools for decision-makers in the healthcare sector.

Details

Journal of Economic Studies, vol. 51 no. 9
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 11 December 2023

Saroj Kumar Pani and Madhusmita Tripathy

This paper explains why some firms manage to capture disproportionate value from their network of relationships, leading to superior performance. The paper examines how a firm's…

Abstract

Purpose

This paper explains why some firms manage to capture disproportionate value from their network of relationships, leading to superior performance. The paper examines how a firm's dependencies affect its value appropriation potential (VAP) in economic networks.

Design/methodology/approach

The paper follows the axiomatic method and the embeddedness perspective of firms to develop an index called nodal power, which captures the power that accrues to a firm in exchange-based economic networks. Thereafter, using the formal method and simulation, it shows nodal power reflects a firm's VAP in economic networks.

Findings

The study analysis and findings prove that a firm's dyadic level exchange relations and the embedded network structure determine its VAP by affecting the nodal power. A firm with lesser nodal power is likely to appropriate less value from its relations even if it equally contributes to the value creation. This finding explains how the structural and relational characteristics of a firm's network enable disproportionate value appropriation.

Practical implications

Nodal power furthers the scope of analyzing firms' economic relationships and changing power equations in dynamic networks. It can help firms build optimal strategic networks and manage the portfolio of relationships by predicting the impact of changing relations on firms' VAP.

Originality/value

The paper's original contribution is to explain, through formal analysis, why and how the structure and nature of relations of firms affect their VAP. The paper also formalizes the power-dependence principle through a dependency-based index called nodal power and uses it to show how interfirm dependencies are key to value appropriation.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 7
Type: Research Article
ISSN: 1741-0401

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Book part
Publication date: 5 April 2024

Ziwen Gao, Steven F. Lehrer, Tian Xie and Xinyu Zhang

Motivated by empirical features that characterize cryptocurrency volatility data, the authors develop a forecasting strategy that can account for both model uncertainty and…

Abstract

Motivated by empirical features that characterize cryptocurrency volatility data, the authors develop a forecasting strategy that can account for both model uncertainty and heteroskedasticity of unknown form. The theoretical investigation establishes the asymptotic optimality of the proposed heteroskedastic model averaging heterogeneous autoregressive (H-MAHAR) estimator under mild conditions. The authors additionally examine the convergence rate of the estimated weights of the proposed H-MAHAR estimator. This analysis sheds new light on the asymptotic properties of the least squares model averaging estimator under alternative complicated data generating processes (DGPs). To examine the performance of the H-MAHAR estimator, the authors conduct an out-of-sample forecasting application involving 22 different cryptocurrency assets. The results emphasize the importance of accounting for both model uncertainty and heteroskedasticity in practice.

Article
Publication date: 20 March 2024

Nisha, Neha Puri, Namita Rajput and Harjit Singh

The purpose of this study is to analyse and compile the literature on various option pricing models (OPM) or methodologies. The report highlights the gaps in the existing…

70

Abstract

Purpose

The purpose of this study is to analyse and compile the literature on various option pricing models (OPM) or methodologies. The report highlights the gaps in the existing literature review and builds recommendations for potential scholars interested in the subject area.

Design/methodology/approach

In this study, the researchers used a systematic literature review procedure to collect data from Scopus. Bibliometric and structured network analyses were used to examine the bibliometric properties of 864 research documents.

Findings

As per the findings of the study, publication in the field has been increasing at a rate of 6% on average. This study also includes a list of the most influential and productive researchers, frequently used keywords and primary publications in this subject area. In particular, Thematic map and Sankey’s diagram for conceptual structure and for intellectual structure co-citation analysis and bibliographic coupling were used.

Research limitations/implications

Based on the conclusion presented in this paper, there are several potential implications for research, practice and society.

Practical implications

This study provides useful insights for future research in the area of OPM in financial derivatives. Researchers can focus on impactful authors, significant work and productive countries and identify potential collaborators. The study also highlights the commonly used OPMs and emerging themes like machine learning and deep neural network models, which can inform practitioners about new developments in the field and guide the development of new models to address existing limitations.

Social implications

The accurate pricing of financial derivatives has significant implications for society, as it can impact the stability of financial markets and the wider economy. The findings of this study, which identify the most commonly used OPMs and emerging themes, can help improve the accuracy of pricing and risk management in the financial derivatives sector, which can ultimately benefit society as a whole.

Originality/value

It is possibly the initial effort to consolidate the literature on calibration on option price by evaluating and analysing alternative OPM applied by researchers to guide future research in the right direction.

Details

Qualitative Research in Financial Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4179

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 158