Search results

1 – 10 of over 14000
Book part
Publication date: 7 September 2023

Martin Götz and Ernest H. O’Boyle

The overall goal of science is to build a valid and reliable body of knowledge about the functioning of the world and how applying that knowledge can change it. As personnel and…

Abstract

The overall goal of science is to build a valid and reliable body of knowledge about the functioning of the world and how applying that knowledge can change it. As personnel and human resources management researchers, we aim to contribute to the respective bodies of knowledge to provide both employers and employees with a workable foundation to help with those problems they are confronted with. However, what research on research has consistently demonstrated is that the scientific endeavor possesses existential issues including a substantial lack of (a) solid theory, (b) replicability, (c) reproducibility, (d) proper and generalizable samples, (e) sufficient quality control (i.e., peer review), (f) robust and trustworthy statistical results, (g) availability of research, and (h) sufficient practical implications. In this chapter, we first sing a song of sorrow regarding the current state of the social sciences in general and personnel and human resources management specifically. Then, we investigate potential grievances that might have led to it (i.e., questionable research practices, misplaced incentives), only to end with a verse of hope by outlining an avenue for betterment (i.e., open science and policy changes at multiple levels).

Article
Publication date: 14 October 2022

Meng Xiao, Nian Cai, Zhuokun Mo, Shule Yan, Nili Tian, Jing Ma and Han Wang

Statistical modeling has been successfully applied to integrated circuit (IC) solder joint inspection. However, there are some inherent problems in previous statistical modeling…

Abstract

Purpose

Statistical modeling has been successfully applied to integrated circuit (IC) solder joint inspection. However, there are some inherent problems in previous statistical modeling methods. This paper aims to propose an adaptive statistical modeling method to further improve the inspection performance for IC solder joints.

Design/methodology/approach

First, different pixels in the IC solder joint image were modeled by different templates, each of which was composed of the hue value of the pixel and a proposed template significance factor. Then, the potential defect image was obtained by adaptive template matching and the potential defect threshold for each pixel. It was noted that the number of templates, matching distance threshold, potential defect threshold and updating rate were adaptively updated during model training. Finally, the trained statistical model was used to inspect the IC solder joints by means of defect degree.

Findings

Experimental results indicated that the proposed adaptive schemes greatly contributed to the inspection performance of statistical modeling. Also, the proposed inspection method achieved better performance compared with some state-of-the-art inspection methods.

Originality/value

The proposed method offers a promising approach for IC solder joint inspection, which establishes different numbers of templates constructed by pixel values and template significance factors for different pixels. Also, some important parameters were adaptively updated with the updating of the model, which contributed to the inspection performance of the model.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 April 2023

Agung Sutrisno, Cynthia Erlita Virgin Wuisang and Ade Yusupa

The regular occurrence of natural disasters elevates the need for an effective method to measure organizational preparedness in responding to the adverse impact of disasters. In…

Abstract

Purpose

The regular occurrence of natural disasters elevates the need for an effective method to measure organizational preparedness in responding to the adverse impact of disasters. In this context, this paper presents a new decision support model to assess organizational disaster preparedness using both subjective and objective disaster preparedness criteria in a multi-criteria decision-making context.

Design/methodology/approach

The statistical variance method is integrated with the proximity value index (PVI) technique to determine priority scores in order to rank organizational disaster readiness.

Findings

The results of applying the integrated model developed herein enable decision-makers to make informed decisions for assigning priority ranking of organizational disaster preparedness in a simpler and more efficient way.

Research limitations/implications

Human resource is the most impacting criterion affecting hospital preparedness in undertaking action to cure disaster victims.

Practical implications

This paper offers an exemplar of a simple and efficient decision-making process considering the subjectivity associated with decision-making as well as the objectivity of data used for determining the priority ranking of organizational disaster preparedness.

Originality/value

Integrating statistical variance method with the PVI technique is novel and it has not been presented in previous studies. In fact, this study is the first to integrate both methods for selecting the priority ranking of organizational disaster preparedness.

Details

International Journal of Emergency Services, vol. 12 no. 2
Type: Research Article
ISSN: 2047-0894

Keywords

Article
Publication date: 28 October 2022

Jaydeepsinh M. Ravalji and Shruti J. Raval

Selective laser melting and electron beam melting processes are well-known for the additive manufacturing of metal parts. Metal powder bed fusion (MPBF) is a common term for them…

Abstract

Purpose

Selective laser melting and electron beam melting processes are well-known for the additive manufacturing of metal parts. Metal powder bed fusion (MPBF) is a common term for them. The MPBF process can empower the manufacturing of intricate shapes by reducing the use of special tools, shortening the supply chain and allowing small batches. However, the MPBF process suffers from many quality issues. In literature, several works are recorded for qualification of the MPBF part. The purpose of this study is to recollect those works done for quality control and report their helpful findings for further research and development.

Design/methodology/approach

A systematic literature review was conducted to highlight the major quality issues in the MPBF process and its root causes. Further, the works reported in the literature for mitigation of these issues are classified and discussed in five categories: experimental investigation, finite element method-based numerical models, physics-based analytical models, in-situ control using artificial intelligence (AI) and machine learning (ML) methods and statistical approaches. A comparison is also prepared among these strategies based on their suitability and limitations. Additionally, improvements in MPBF printers are pointed out to enhance the part quality.

Findings

Analytical models require less computational time to simulate the MPBF process and need a smaller number of experiments to confirm the results. They can be used as an efficient process parameter planning tool to print metal parts for noncritical applications. The AI-ML based quality control is also suitable for MPBF processes as it can control many processing parameters that may affect the quality of the MPBF part. Moreover, capabilities of MPBF printers like thinner layer thickness, smaller beam diameter, multiple lasers and high build temperature range can help in quality control.

Research limitations/implications

This study converts the piecemeal data on MPBF part qualification methods into interesting information and presents it in tabular form under each strategy. This tabular information provides the basis for further quality improvement efforts in the MPBF process.

Originality/value

This study references researchers and practitioners on recent quality control efforts and their significant findings for a better quality of MPBF part.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 August 2023

Fatih Yılmaz, Ercan Gürses and Melin Şahin

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test…

Abstract

Purpose

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test campaign and micro computerized tomography (microCT) imaging.

Design/methodology/approach

ASTM E8 tensile test specimens are designed and manufactured by EBM at an Arcam Q20 Plus machine. Surface quality is improved by machining to discard the effect of surface roughness. After surface machining, hot isostatic pressing (HIP) post-treatment is applied to half of the specimens to remove unsolicited internal defects. ASTM E8 tensile test campaign is carried out simultaneously with digital image correlation to acquire strain data for each sample. Finally, build direction and HIP post-treatment dependencies of elastoplastic properties are analyzed by F-test and t-test statistical analyses methods.

Findings

Modulus of elasticity presents isotropic behavior for each build direction according to F-test and t-test analysis. Yield and ultimate strengths vary according to build direction and post-treatment. Stiffness and strength properties are superior to conventional Ti-6Al-4V material; however, ductility turns out to be poor for aerospace structures compared to conventional Ti-6Al-4V alloy. In addition, micro CT images show that support structure leads to dense internal defects and pores at applied surfaces. However, HIP post-treatment diminishes those internal defects and pores thoroughly.

Originality/value

As a novel scientific contribution, this study investigates the effects of three orthogonal build directions on elastoplastic properties, while many studies focus on only two-build directions. Evaluation of Poisson’s ratio is the other originality of this study. Furthermore, another finding through micro CT imaging is that temporary support structures result in intense defects closer to applied surfaces; hence high-stress regions of structures should be avoided to use support structures.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 June 2023

Yuming Liu, Yong Zhao, Qingyuan Lin, Sheng Liu, Ende Ge and Wei Wang

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations…

Abstract

Purpose

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations. Furthermore, the accuracy of the method would be verified by comparing it with the other conventional methods for calculating the optimal assembly pose.

Design/methodology/approach

First, the surface morphology of the parts with manufacturing deviations would be modeled to obtain the skin model shapes that can characterize the specific geometric features of the part. The model can provide the basis for the subsequent contact deformation analysis. Second, the simulated non-nominal components are discretized into point cloud data, and the spatial position of the feature points is corrected. Furthermore, the evaluation index to measure the assembly quality has been established, which integrates the contact deformations and the spatial relationship of the non-nominal parts’ key feature points. Third, the improved particle swarm optimization (PSO) algorithm combined with the finite element method is applied to the process of solving the optimal pose of the assembly, and further deformation calculations are conducted based on interference detection. Finally, the feasibility of the optimal pose prediction method is verified by a case.

Findings

The proposed method has been well suited to solve the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the effectiveness of the method with an example of the shaft-hole assembly.

Research limitations/implications

The method proposed in this paper has been well suited to the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the method with an example of the shaft-hole assembly.

Originality/value

The different surface morphology influenced by manufacturing deviations will lead to the various contact behaviors of the mating surfaces. The assembly problem for the components with complex geometry is usually accompanied by deformation due to the loading during the contact process, which may further affect the accuracy of the assembly. Traditional approaches often use worst-case methods such as tolerance offsets to analyze and optimize the assembly pose. In this paper, it is able to characterize the specific parts in detail by introducing the skin model shapes represented with the point cloud data. The dynamic changes in the parts' contact during the fitting process are also considered. Using the PSO method that takes into account the contact deformations improve the accuracy by 60.7% over the original method that uses geometric alignment alone. Moreover, it can optimize the range control of the contact to the maximum extent to prevent excessive deformations.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2094

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 15 December 2022

Marta Gomes Francisco, Osiris Canciglieri Junior and Angelo Marcio Oliveira Santanna

The Design For Six Sigma (DFSS) methodology is one of the most important to achieving excellence in an organization’s product development process. This paper aims to propose a…

Abstract

Purpose

The Design For Six Sigma (DFSS) methodology is one of the most important to achieving excellence in an organization’s product development process. This paper aims to propose a roadmap for product development based on the DFSS for the consumer durables manufacturing industries. The proposed roadmap presents a systematic approach to the phases of the product development process, integrating the statistical techniques and quality tools that should be used in each phase.

Design/methodology/approach

This study presents a detailed roadmap for product development, which was built by identifying gaps in the DFSS methods, based on previous studies on the subject. In this step, the opportunities are provided in all phases from creation to discontinuation of the product in the market. In addition, the roadmap presented was validated by team of stakeholders in the product development process of different industrial companies.

Findings

The proposed roadmap for the product development process based on six sigma design suggests a visual tool with sequential steps and techniques that allow you to follow the evolution of the development process from idea conception until the product is discontinued in the market. Identifying the priorities of organizations, especially the consumer, regarding the quality and reliability of the product.

Practical implications

The roadmap seeks to facilitate an understanding of the important stages of the product development process and to provide an approach to improving and optimizing the product before the manufacturing process step through the principles of DFSS methodology. This research provides a guide step by step to apply statistical techniques and quality tools in the product development process to achieve high quality and six sigma level in the manufacturing process.

Originality/value

The proposed roadmap of this research combines design for sigma and product development concepts, covering a wide spectrum of relevant activities that include the product development process, the application of statistical techniques and the design of high-quality durable consumer goods to match manufacturing technologies.

Details

International Journal of Lean Six Sigma, vol. 14 no. 5
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 31 October 2022

Seyedeh Mehrangar Hosseini, Behnaz Bahadori and Shahram Charkhan

The purpose of this study is to identify the situation of spatial inequality in the residential system of Tehran city in terms of housing prices in the year 2021 and to examine…

Abstract

Purpose

The purpose of this study is to identify the situation of spatial inequality in the residential system of Tehran city in terms of housing prices in the year 2021 and to examine its changes over time (1991–2021).

Design/methodology/approach

In terms of purpose, this study is applied research and has used a descriptive-analytical method. The statistical population of this research is the residential units in Tehran city 2021. The average per square meter of a residential unit in the level of city neighborhoods was entered in the geographical information system (GIS) in 2021. Moran’s spatial autocorrelation method, map cluster analysis (hot and cold spots) and Kriging interpolation have been used for spatial analysis of points. Then, the change in spatial inequality in the residential system of Tehran city has been studied and measured based on the price per square meter of a residential unit for 30 years in the 22 districts of Tehran by using statistical clustering based on distance with standard deviation.

Findings

The result of spatial autocorrelation analysis with a score of 0.873872 and a p-value equal to 0.000000 indicates a cluster distribution of housing prices throughout the city. The results of hot spots show that the highest concentration of hot spots (the highest price) is in the northern part of the city, and the highest concentration of cold spots (the lowest price) is in the southern part of Tehran city. Calculating the area and estimating the quantitative values of data-free points by the use of the Kriging interpolation method indicates that 9.95% of Tehran’s area has a price of less than US$800, 17.68% of it has a price of US$800 to US$1,200, 25.40% has the price of US$1,200 to US$1,600, 17.61% has the price of US$1,600 to US$2,000, 9.54% has the price of US$2,000 to US$2,200, 6.69% has the price of US$2,200 to US$2,600, 5.38% has the price of US$2,600 to US$2,800, 4.59% has the price of US$2,800 to US$3,200 and finally, the 3.16% has a price more than US$3,200. The highest price concentration (above US$3,200) is in five neighborhoods (Zafaranieh, Mahmoudieh, Tajrish, Bagh-Ferdows and Hesar Bou-Ali). The findings from the study of changes in housing prices in the period (1991–2021) indicate that the southern part of Tehran has grown slightly compared to the average range, and the western part of Tehran, which includes the 21st and 22nd regions with much more growth than the average price.

Originality/value

There is massive inequality in housing prices in different areas and neighborhoods of Tehran city in 2021. In the period under study, spatial inequality in the residential system of Tehran intensified. The considerable increase in housing prices in the housing market of Tehran has made this sector a commodity, intensifying the inequality between owners and non-owners. This increase in housing price inequality has caused an increase in the informal living for the population of the southern part. This population is experiencing a living situation that contrasts with the urban plans and policies.

Details

International Journal of Housing Markets and Analysis, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 9 January 2024

Ning Chen, Zhenyu Zhang and An Chen

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through…

Abstract

Purpose

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through supervised learning methods; however, the evaluation of classification results remains a challenge. The previous studies mostly adopted simplex evaluation based on empirical and quantitative assessment strategies. This paper aims to shed new light on the comprehensive evaluation and comparison of diverse classification methods through visualization, clustering and ranking techniques.

Design/methodology/approach

An empirical study is conducted using 9 state-of-the-art classification methods on a real-world data set of 653 construction accidents in China for predicting the consequence with respect to 39 carefully featured factors and accident type. The proposed comprehensive evaluation enriches the interpretation of classification results from different perspectives. Furthermore, the critical factors leading to severe construction accidents are identified by analyzing the coefficients of a logistic regression model.

Findings

This paper identifies the critical factors that significantly influence the consequence of construction accidents, which include accident type (particularly collapse), improper accident reporting and handling (E21), inadequate supervision engineers (O41), no special safety department (O11), delayed or low-quality drawings (T11), unqualified contractor (C21), schedule pressure (C11), multi-level subcontracting (C22), lacking safety examination (S22), improper operation of mechanical equipment (R11) and improper construction procedure arrangement (T21). The prediction models and findings of critical factors help make safety intervention measures in a targeted way and enhance the experience of safety professionals in the construction industry.

Research limitations/implications

The empirical study using some well-known classification methods for forecasting the consequences of construction accidents provides some evidence for the comprehensive evaluation of multiple classifiers. These techniques can be used jointly with other evaluation approaches for a comprehensive understanding of the classification algorithms. Despite the limitation of specific methods used in the study, the presented methodology can be configured with other classification methods and performance metrics and even applied to other decision-making problems such as clustering.

Originality/value

This study sheds new light on the comprehensive comparison and evaluation of classification results through visualization, clustering and ranking techniques using an empirical study of consequence prediction of construction accidents. The relevance of construction accident type is discussed with the severity of accidents. The critical factors influencing the accident consequence are identified for the sake of taking prevention measures for risk reduction. The proposed method can be applied to other decision-making tasks where the evaluation is involved as an important component.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 14000