Search results

1 – 10 of 88
Article
Publication date: 19 June 2019

Yunxia Sun, Xufeng Xiao, Zhiming Gao and Xinlong Feng

The purpose of this paper is to propose an efficient space-time operator-splitting method for the high-dimensional vector-valued Allen–Cahn (AC) equations. The key of the…

Abstract

Purpose

The purpose of this paper is to propose an efficient space-time operator-splitting method for the high-dimensional vector-valued Allen–Cahn (AC) equations. The key of the space-time operator-splitting is to devide the complex partial differential equations into simple heat equations and nolinear ordinary differential equations.

Design/methodology/approach

Each component of high-dimensional heat equations is split into a series of one-dimensional heat equations in different spatial directions. The nonlinear ordinary differential equations are solved by a stabilized semi-implicit scheme to preserve the upper bound of the solution. The algorithm greatly reduces the computational complexity and storage requirement.

Findings

The theoretical analyses of stability in terms of upper bound preservation and mass conservation are shown. The numerical results of phase separation, evolution of the total free energy and total mass conservation show the effectiveness and accuracy of the space-time operator-splitting method.

Practical implications

Extensive 2D/3D numerical tests demonstrated the efficacy and accuracy of the proposed method.

Originality/value

The space-time operator-splitting method reduces the complexity of the problem and reduces the storage space by turning the high-dimensional problem into a series of 1D problems. We give the theoretical analyses of upper bound preservation and mass conservation for the proposed method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 September 2019

Kangxin Chen and Houfa Shen

The purpose of this paper is to simulate two macrosegregation benchmarks with a newly developed stabilized finite element algorithm based on a semi-implicit pressure correction…

Abstract

Purpose

The purpose of this paper is to simulate two macrosegregation benchmarks with a newly developed stabilized finite element algorithm based on a semi-implicit pressure correction scheme.

Design/methodology/approach

A streamline-upwind/Petrov–Galerkin (SUPG) stabilized finite element algorithm is developed for the coupled conservation equations of mass, momentum, energy and species. A semi-implicit pressure correction method combined with SUPG stabilization technique is proposed to solve the convection flow during solidification. An analytically derived enthalpy method is adopted to solve the energy conservation equation. The nonlinearities of the energy and species equations are tackled by Newton–Raphson method. Two macrosegregation benchmarks considering the solidification of an Al-4.5 per cent Cu alloy and a Sn-10 per cent Pb alloy are simulated.

Findings

A very good agreement is achieved by comparison with the classical finite volume method and a novel meshless method for the Al-4.5 per cent Cu alloy solidification benchmark. Moreover, a unique reference numerical solution has been obtained. Besides, it is demonstrated that the stabilized finite element algorithm can capture the flow instability and channel segregation during solidification of the Sn-10 per cent Pb alloy.

Originality/value

A semi-implicit pressure correction method combined with SUPG stabilization technique is adopted to develop robust stabilized finite element algorithm for the macrosegregation model. A new enthalpy formulation for heat transfer problems with phase change is derived analytically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2021

Mingyang Liu, Huifen Zhu, Guangjun Gao, Chen Jiang and G.R Liu

The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by…

Abstract

Purpose

The purpose of this paper is to investigate a novel stabilization scheme to handle convection and pressure oscillation in the process of solving incompressible laminar flows by finite element method (FEM).

Design/methodology/approach

The semi-implicit stabilization scheme, characteristic-based polynomial pressure projection (CBP3) consists of the Characteristic-Galerkin method and polynomial pressure projection. Theoretically, the proposed scheme works for any type of element using equal-order approximation for velocity and pressure. In this work, linear 3-node triangular and 4-node tetrahedral elements are the focus, which are the simplest but most difficult elements for pressure stabilizations.

Findings

The present paper proposes a new scheme, which can stabilize FEM solution for flows of both low and relatively high Reynolds numbers. And the influence of stabilization parameters of the CBP3 scheme has also been investigated.

Research limitations/implications

The research in this work is limited to the laminar incompressible flow.

Practical implications

The verification and validation of the CBP3 scheme are conducted by several 2 D and 3 D numerical examples. The scheme could be used to deal with more practical fluid problems.

Social implications

The application of scheme to study complex hemodynamics of patient-specific abdominal aortic aneurysm is also presented, which demonstrates its potential to solve bio-flows.

Originality/value

The paper simulated 2 D and 3 D numerical examples with superior results compared to existing results and experiments. The novel CBP3 scheme is verified to be very effective in handling convection and pressure oscillation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Rhodri LT Bevan, Etienne Boileau, Raoul van Loon, R.W. Lewis and P Nithiarasu

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not…

Abstract

Purpose

The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared.

Design/methodology/approach

This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split.

Findings

In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations.

Originality/value

A comprehensive comparison between three versions of the CBS method is provided for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2013

N.N.S. Yapage and D.S. Liyanapathirana

Several constitutive models are available in the literature to describe the mechanical behaviour of cement stabilized soils. However, difficulties in implementing such models…

Abstract

Purpose

Several constitutive models are available in the literature to describe the mechanical behaviour of cement stabilized soils. However, difficulties in implementing such models within commercial finite element programs have hindered their application to solve related boundary value problems. Therefore, the aim of this study is to implement a constitutive model, which has the capability to simulate cement stabilized soil behaviour, into the finite element program ABAQUS through the user material subroutine UMAT.

Design/methodology/approach

After a detailed review of existing constitutive models for cement stabilized soils, a model based on the elasto‐plastic theory and the extended critical state concept with an associated flow rule is selected for the finite element implementation. A semi‐implicit integration method (cutting plane algorithm) with a continuum elasto‐plastic modulus and path dependent stress prediction strategy has been used in the implementation. The performance of the new finite element formulation of the constitutive model is verified by simulating triaxial test data using the finite element program with the new implementation and predictions from constitutive equations as well as experimental data.

Findings

The paper provides the implementation procedure of the constitutive model into ABAQUS but this method is useful for the implementation of any other constitutive model into ABAQUS or any other finite element program. Simulated results for the volumetric deformation of cement stabilized soils show that the cement stabilized soils do not obey the associated flow rule at high confining pressures. The parametric study shows that the influence of cementation increases the brittle nature and the bearing capacity of treated clay. In addition the results show that proposed finite element implementation has the ability to illustrate key features of the cement stabilized clay.

Originality/value

This paper presents an implementation of an elasto‐plastic constitutive model, based on the extended critical state concept, for cement stabilized soils into a finite element programme, which has been identified as an important and challenging topic in computational geomechanics. This implementation is useful in solving boundary value problems in geomechanics involving cement stabilized soils, incorporating key characteristics of these soils.

Details

Engineering Computations, vol. 30 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 May 2023

Xiaoyu Liu, Suchuan Dong and Zhi Xie

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Abstract

Purpose

This paper aims to present an unconditionally energy-stable scheme for approximating the convective heat transfer equation.

Design/methodology/approach

The scheme stems from the generalized positive auxiliary variable (gPAV) idea and exploits a special treatment for the convection term. The original convection term is replaced by its linear approximation plus a correction term, which is under the control of an auxiliary variable. The scheme entails the computation of two temperature fields within each time step, and the linear algebraic system resulting from the discretization involves a coefficient matrix that is updated periodically. This auxiliary variable is given by a well-defined explicit formula that guarantees the positivity of its computed value.

Findings

Compared with the semi-implicit scheme and the gPAV-based scheme without the treatment on the convection term, the current scheme can provide an expanded accuracy range and achieve more accurate simulations at large (or fairly large) time step sizes. Extensive numerical experiments have been presented to demonstrate the accuracy and stability performance of the scheme developed herein.

Originality/value

This study shows the unconditional discrete energy stability property of the current scheme, irrespective of the time step sizes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

Guo-Dong Zhang and Yinnian He

The purpose of this paper is to consider the numerical implementation of the Euler semi-implicit scheme for three-dimensional non-stationary magnetohydrodynamics (MHD) equations…

Abstract

Purpose

The purpose of this paper is to consider the numerical implementation of the Euler semi-implicit scheme for three-dimensional non-stationary magnetohydrodynamics (MHD) equations. The Euler semi-implicit scheme is used for time discretization and (P 1b , P 1, P 1) finite element for velocity, pressure and magnet is used for the spatial discretization.

Design/methodology/approach

Several numerical experiments are provided to show this scheme is unconditional stability and unconditional L2−H2 convergence with the L2−H2 optimal error rates for solving the non-stationary MHD flows.

Findings

In this paper, the authors mainly focus on the numerical investigation of the Euler semi-implicit scheme for MHD flows. First, the unconditional stability and the L2−H2 unconditional convergence with optimal L2−H2 error rates of this scheme are validated through our numerical tests. Some interesting phenomenons are presented.

Originality/value

The Euler semi-implicit scheme is used to simulate a practical physics model problem to investigate the interaction of fluid and induced magnetic field. Some interesting phenomenons are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

Guangtao Duan and Bin Chen

The purpose of this paper is to find the best solver for parallelizing particle methods based on solving Pressure Poisson Equation (PPE) by taking Moving Particle Semi-Implicit

Abstract

Purpose

The purpose of this paper is to find the best solver for parallelizing particle methods based on solving Pressure Poisson Equation (PPE) by taking Moving Particle Semi-Implicit (MPS) method as an example because the solution for PPE is usually the most time-consuming part difficult to parallelize.

Design/methodology/approach

To find the best solver, the authors compare six Krylov solvers, namely, Conjugate Gradient method (CG), Scaled Conjugate Gradient method (SCG), Bi-Conjugate Gradient Stabilized (BiCGStab) method, Conjugate Gradient Squared (CGS) method with Symmetric Lanczos Algorithm (SLA) method and Incomplete Cholesky Conjugate Gradient method (ICCG) in terms of convergence, time consumption, parallel efficiency and memory consumption for the semi-implicit particle method. The MPS method is parallelized by the hybrid Open Multi-Processing (OpenMP)/Message Passing Interface (MPI) model. The dam-break flow and channel flow simulations are used to evaluate the performance of different solvers.

Findings

It is found that CG converges stably, runs fastest in the serial way, uses the least memory and has highest OpenMP parallel efficiency, but its MPI parallel efficiency is lower than SLA because SLA requires less synchronization than CG.

Originality/value

With all these criteria considered and weighed, the recommended parallel solver for the MPS method is CG.

Article
Publication date: 5 February 2018

Gino Cortellessa, Fausto Arpino, Simona Di Fraia and Mauro Scungio

In this work, a new two-phase version of the finite element-based Artificial Compressibility (AC) Characteristic-Based Split (CBS) algorithm is developed and applied for the first…

Abstract

Purpose

In this work, a new two-phase version of the finite element-based Artificial Compressibility (AC) Characteristic-Based Split (CBS) algorithm is developed and applied for the first time to heat and mass transfer phenomena in porous media with associated phase change. The purpose of this study is to provide an alternative for the theoretical analysis and numerical simulation of multiphase transport phenomena in porous media. Traditionally, the more complex Separate Flow Model was used in which the vapour and liquid phases were considered as distinct fluids and mathematically described by the conservation laws for each phase separately, resulting in a large number of governing equations.

Design/methodology/approach

Even though the adopted mathematical model presents analogies with the conventional multicomponent mixture flow model, it is characterized by a considerable reduction in the number of the differential equations for the primary variables. The fixed-grid numerical formulation can be applied to the resolution of general problems that may simultaneously include a superheated vapour region, a two-phase zone and a sub-cooled liquid region in a single physical domain with irregular and moving phase interfaces in between. The local thermal non-equilibrium model is introduced to consider the heat exchange between fluid and solid within the porous matrix.

Findings

The numerical model is verified considering the transport phenomena in a homogenous and isotropic porous medium in which water is injected from one side and heated from the other side, where it leaves the computational domain in a superheated vapour state. Dominant forces are represented by capillary interactions and two-phase heat conduction. The obtained results have been compared with the numerical data available in the scientific literature.

Social implications

The present algorithm provides a powerful routine tool for the numerical modelling of complex two-phase transport processes in porous media.

Originality/value

For the first time, the stabilized AC-CBS scheme is applied to the resolution of compressible viscous flow transport in porous materials with associated phase change. A properly stabilized matrix inversion-free procedure employs an adaptive local time step that allows acceleration of the solution process even in the presence of large source terms and low diffusion coefficients values (near the phase change point).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

Abdelraheem Mahmoud Aly

Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an incompressible smoothed particle…

Abstract

Purpose

Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an incompressible smoothed particle hydrodynamics (ISPH) technique. In this technique, incompressibility is enforced by using SPH projection method and a stabilized incompressible SPH method by relaxing the density invariance condition is applied. The paper aims to discuss these issues.

Design/methodology/approach

The Rayleigh-Taylor instability is introduced in two and three phases by using ISPH method. The author simulated natural convection in a square/cubic cavity using ISPH method in two and three dimensions. The solutions represented in temperature, vertical velocity and horizontal velocity have been studied with different values of Rayleigh number Ra parameter (103=Ra=105). In addition, characteristic based scheme in Finite Element Method is introduced for modeling the natural convection in a square cavity.

Findings

The results for Rayleigh-Taylor instability and natural convection flow had been compared with the previous researches.

Originality/value

Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an ISPH technique. In ISPH method, incompressibility is enforced by using SPH projection method and a stabilized incompressible SPH method by relaxing the density invariance condition is introduced. The Rayleigh-Taylor instability is introduced in two and three phases by using ISPH method. The author simulated natural convection in a square/cubic cavity using ISPH method in two and three dimensions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 88