Search results

1 – 10 of over 1000
Article
Publication date: 1 October 2004

Jaw‐Ren Lin, Rong‐Fang Lu and Won‐Hsion Liao

The analysis of squeeze‐film performances between curved annular plates with an electrically conducting fluid in the presence of a transverse magnetic field is presented in this…

Abstract

The analysis of squeeze‐film performances between curved annular plates with an electrically conducting fluid in the presence of a transverse magnetic field is presented in this study. The magneto‐hydrodynamic (MHD) Reynolds‐type equation for squeezing‐film curved annular disks is derived using the continuity equation and the MHD motion equations. A closed‐form solution for the squeezing film pressure is obtained, and applied to predict the MHD squeeze‐film characteristics. According to the results obtained, the presence of applied magnetic fields signifies an increase in the MHD squeeze‐film pressure. Compared with the classical non‐conducting‐lubricant case, the magnetic‐field effect characterized by the Hartmann number provides an enhancement to the MHD load‐carrying capacity and the response time, especially for larger values of the curved shape parameter or smaller values of inner‐outer radius ratio of the curved annular disks.

Details

Industrial Lubrication and Tribology, vol. 56 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Neminath Bhujappa Naduvinamani and Mareppa Rajashekar

The purpose of this article is to analyse the effects of surface roughness on the magneto-hydrodynamic (MHD) squeeze-film characteristics between a sphere and a porous plane…

Abstract

Purpose

The purpose of this article is to analyse the effects of surface roughness on the magneto-hydrodynamic (MHD) squeeze-film characteristics between a sphere and a porous plane surface, which have not been studied so far.

Design/methodology/approach

The analytical model takes into account the effect of porosity by assuming that the flow in the porous matrix obeys modified Darcy's law. The stochastic MHD Reynold's type equation is derived by using the Christensen's stochastic method developed for hydrodynamic lubrication of rough surfaces. Two types of one-dimensional surface roughness (radial and azimuthal) patterns are considered.

Findings

The expressions for the mean MHD squeeze-film pressure and mean load-carrying capacity are obtained numerically. The results are shown graphically for selected representative parametric values. It is found that the response time increases significantly for the MHD case as compared to the corresponding non-conducting lubricants. The effect of roughness parameter is to increase/decrease the load-carrying capacity and the response time for azimuthal/radial roughness patterns as compared to the smooth case. Also, the effect of porous parameter is to decrease the load-carrying capacity and response time as compared to the solid case.

Originality/value

In this paper, an attempt has been made to analyse the combined effects of surface roughness and permeability on the MHD squeeze-film characteristics between a sphere and a plane surface.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 August 2014

Sundarammal Kesavan, Ali J. Chamkha and Santhana Krishnan Narayanan

– The purpose of this paper is to consider magnetohydrodynamic (MHD) squeeze film characteristics between finite porous parallel rectangular plates with surface roughness.

Abstract

Purpose

The purpose of this paper is to consider magnetohydrodynamic (MHD) squeeze film characteristics between finite porous parallel rectangular plates with surface roughness.

Design/methodology/approach

Based upon the MHD theory, this paper analyzes the surface roughness effect squeeze film characteristics between finite porous parallel rectangular plates lubricated with an electrically conducting fluid in the presence of a transverse magnetic field.

Findings

It is found that the magnetic field effects characterized by the Hartmann number produce an increased value of the load carrying capacity and the response time as compared to the classical Newtonian lubricant case. The modified averaged stochastic Reynolds equation governing the squeeze film pressure is derived.

Research limitations/implications

The present study has considered both Newtonian fluids and non-Newtonian liquids.

Practical implications

The work represents a very useful source of information for researchers on the subject of MHD squeeze film with finite porous parallel rectangular plates lubricated with an electrically conducting fluid.

Originality/value

This paper is relatively original and illustrates the squeeze film characteristics between finite porous parallel rectangular plates with MHD effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2013

GholamReza Kefayati, Mofid Gorji, Hasan Sajjadi and Davood Domiri Ganji

Magneto hydrodynamic (MHD) flows in fluids is known to have an important effect on heat transfer and fluid flow in various substances while the quality of the substances and the…

Abstract

Purpose

Magneto hydrodynamic (MHD) flows in fluids is known to have an important effect on heat transfer and fluid flow in various substances while the quality of the substances and the considered shapes can influence the amount of changes. Thus, MHD flows in a different form and widespread alterations in the kind of the material and the power of MHD flow were carried out by lattice Boltzmann method (LBM) in this investigation. The aim of this paper is to identify the ability of LBM for solving MHD flows as the effect of different substances in the presence of the magnetic field changes.

Design/methodology/approach

This method was utilized for solving MHD natural convection in an open cavity while Hartmann number varies from 0 to 150 and Rayleigh number is considered at values of Ra=103, 104 and 105, with the Prandtl number altering in a wide range of Pr=0.025, 0.71 and 6.2. An appropriate validation with previous numerical investigations demonstrated that this attitude is a suitable method for MHD problems.

Findings

Results show the alterations of Prandtl numbers influence the isotherms and the streamlines widely at different Rayleigh and Hartmann numbers simultaneously. Moreover, heat transfer declines with the increment of Hartmann number, while this reduction is marginal for Ra=103 by comparison with other Rayleigh numbers. The effect of the magnetic field on the average Nusselt number at Liquid Gallium (Pr=0.025) is the least among considered materials.

Originality/value

In this method, just the force term at LBM changes in the presence of MHD flow as the added term rises from the classic equations of fluids mechanic. Moreover, all parameters of the added term and the method of their computing are exhibited.

Details

Engineering Computations, vol. 30 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 August 2017

Velinda Calvert and Mohsen Razzaghi

This paper aims to propose a new numerical method for the solution of the Blasius and magnetohydrodynamic (MHD) Falkner-Skan boundary-layer equations. The Blasius and MHD

Abstract

Purpose

This paper aims to propose a new numerical method for the solution of the Blasius and magnetohydrodynamic (MHD) Falkner-Skan boundary-layer equations. The Blasius and MHD Falkner-Skan equations are third-order nonlinear boundary value problems on the semi-infinite domain.

Design/methodology/approach

The approach is based upon modified rational Bernoulli functions. The operational matrices of derivative and product of modified rational Bernoulli functions are presented. These matrices together with the collocation method are then utilized to reduce the solution of the Blasius and MHD Falkner-Skan boundary-layer equations to the solution of a system of algebraic equations.

Findings

The method is computationally very attractive and gives very accurate results.

Originality/value

Many problems in science and engineering are set in unbounded domains. One approach to solve these problems is based on rational functions. In this work, a new rational function is used to find solutions of the Blasius and MHD Falkner-Skan boundary-layer equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2014

Buhe Eerdun, Qiqige Eerdun, Bala Huhe, Chaolu Temuer and Jing-Yu Wang

The purpose of this paper is to consider a steady two-dimensional magneto-hydrodynamic (MHD) Falkner-Skan boundary layer flow of an incompressible viscous electrically fluid over…

Abstract

Purpose

The purpose of this paper is to consider a steady two-dimensional magneto-hydrodynamic (MHD) Falkner-Skan boundary layer flow of an incompressible viscous electrically fluid over a permeable wall in the presence of a magnetic field.

Design/methodology/approach

The governing equations of MHD Falkner-Skan flow are transformed into an initial values problem of an ordinary differential equation using the Lie symmetry method which are then solved by He's variational iteration method with He's polynomials.

Findings

The approximate solution is compared with the known solution using the diagonal Pad’e approximants and the geometrical behavior for the values of various parameters. The results reveal the reliability and validity of the present work, and this combinational method can be applied to other nonlinear boundary layer flow problems.

Originality/value

In this paper, an approximate analytical solution of the MHD Falkner-Skan flow problem is obtained by combining the Lie symmetry method with the variational iteration method and He's polynomials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 May 2020

Jinting Yang and Tong Zhang

The purpose of this paper is to propose three iterative finite element methods for equations of thermally coupled incompressible magneto-hydrodynamics (MHD) on 2D/3D bounded…

Abstract

Purpose

The purpose of this paper is to propose three iterative finite element methods for equations of thermally coupled incompressible magneto-hydrodynamics (MHD) on 2D/3D bounded domain. The detailed theoretical analysis and some numerical results are presented. The main results show that the Stokes iterative method has the strictest restrictions on the physical parameters, and the Newton’s iterative method has the higher accuracy and the Oseen iterative method is stable unconditionally.

Design/methodology/approach

Three iterative finite element methods have been designed for the thermally coupled incompressible MHD flow on 2D/3D bounded domain. The Oseen iterative scheme includes solving a linearized steady MHD and Oseen equations; unconditional stability and optimal error estimates of numerical approximations at each iterative step are established under the uniqueness condition. Stability and convergence of numerical solutions in Newton and Stokes’ iterative schemes are also analyzed under some strong uniqueness conditions.

Findings

This work was supported by the NSF of China (No. 11971152).

Originality/value

This paper presents the best choice for solving the steady thermally coupled MHD equations with different physical parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

Guo-Dong Zhang and Yinnian He

The purpose of this paper is to consider the numerical implementation of the Euler semi-implicit scheme for three-dimensional non-stationary magnetohydrodynamics (MHD) equations

Abstract

Purpose

The purpose of this paper is to consider the numerical implementation of the Euler semi-implicit scheme for three-dimensional non-stationary magnetohydrodynamics (MHD) equations. The Euler semi-implicit scheme is used for time discretization and (P 1b , P 1, P 1) finite element for velocity, pressure and magnet is used for the spatial discretization.

Design/methodology/approach

Several numerical experiments are provided to show this scheme is unconditional stability and unconditional L2−H2 convergence with the L2−H2 optimal error rates for solving the non-stationary MHD flows.

Findings

In this paper, the authors mainly focus on the numerical investigation of the Euler semi-implicit scheme for MHD flows. First, the unconditional stability and the L2−H2 unconditional convergence with optimal L2−H2 error rates of this scheme are validated through our numerical tests. Some interesting phenomenons are presented.

Originality/value

The Euler semi-implicit scheme is used to simulate a practical physics model problem to investigate the interaction of fluid and induced magnetic field. Some interesting phenomenons are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2001

Jaw‐Ren Lin

The effect of a transverse magnetic field on the squeeze film behaviors between two parallel annular disks lubricated within an electrically conducting fluid is studied. The…

Abstract

The effect of a transverse magnetic field on the squeeze film behaviors between two parallel annular disks lubricated within an electrically conducting fluid is studied. The modified Reynolds equation governing the squeeze film pressure is derived by using the continuity equation and the magneto‐hydrodynamic (MHD) motion equations. According to the results obtained, the influence of magnetic fields signifies an enhancement in the squeeze film pressure. On the whole, the magnetic field effect characterized by the Hartmann number provides an increase in value of the load‐carrying capacity and the response time as compared to the classical non‐conducting lubricant case. It improves the MHD squeeze film characteristics of the system.

Details

Industrial Lubrication and Tribology, vol. 53 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 January 2011

Y.Y. Lok, A. Ishak and I. Pop

The purpose of this paper is to theoretically investigate the steady two‐dimensional magnetohydrodynamic (MHD) boundary layer flow over a shrinking sheet. The effects of…

Abstract

Purpose

The purpose of this paper is to theoretically investigate the steady two‐dimensional magnetohydrodynamic (MHD) boundary layer flow over a shrinking sheet. The effects of stretching and shrinking parameter as well as magnetic field parameter near the stagnation point are studied.

Design/methodology/approach

A similarity transformation is used to reduce the governing partial differential equations to a set of nonlinear ordinary differential equations which are then solved numerically using Keller‐box method.

Findings

The solution is unique for stretching case; however, multiple (dual) solutions exist for small values of magnetic field parameter for shrinking case. The streamlines are non‐aligned and a reverse flow is formed near the surface due to shrinking effect.

Practical implications

The flow due to a stretching or shrinking sheet is relevant to several practical applications in the field of metallurgy, chemical engineering, etc. For example, in manufacturing industry, polymer sheets and filaments are manufactured by continuous extrusion of the polymer from a die to a windup roller, which is located at a finite distance away. In these cases, the properties of the final product depend to a great extent on the rate of cooling which is governed by the structure of the boundary layer near the stretching surface.

Originality/value

The present results are original and new for the MHD flow near the stagnation‐point on a shrinking sheet. For shrinking case, the velocity on the boundary is towards a fixed point which would cause a velocity away from the sheet. Therefore, this paper is important for scientists and engineers in order to become familiar with the flow behaviour and properties of such MHD flow and the way to predict the properties of this flow for the process equipments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000