Search results

1 – 10 of over 13000
Article
Publication date: 7 October 2014

V. Kobelev

The purpose of this paper is to derive the exact analytical expressions for torsion and bending creep of rods with the Norton-Bailey, Garofalo and Naumenko-Altenbach-Gorash…

Abstract

Purpose

The purpose of this paper is to derive the exact analytical expressions for torsion and bending creep of rods with the Norton-Bailey, Garofalo and Naumenko-Altenbach-Gorash constitutive models. These simple constitutive models, for example, the time- and strain-hardening constitutive equations, were based on adaptations for time-varying stress of equally simple models for the secondary creep stage from constant load/stress uniaxial tests where minimum creep rate is constant. The analytical solution is studied for Norton-Bailey and Garofalo laws in uniaxial states of stress.

Design/methodology/approach

The creep component of strain rate is defined by material-specific creep law. In this paper the authors adopt, following the common procedure Betten, an isotropic stress function. The paper derives the expressions for strain rate for uniaxial and shear stress states for the definite representations of stress function. First, in this paper the authors investigate the creep for the total deformation that remains constant in time.

Findings

The exact analytical expressions giving the torque and bending moment as a function of the time were derived.

Research limitations/implications

The material isotropy and homogeneity preimposed. The secondary creep phase is considered.

Practical implications

The results of creep simulation are applied to practically important problem of engineering, namely for simulation of creep and relaxation of helical and disk springs.

Originality/value

The new, closed form solutions with commonly accepted creep models allow a deeper understanding of such a constitutive model's effect on stress and deformation and the implications for high temperature design. The application of the original solutions allows accurate analytic description of creep and relaxation of practically important problems in mechanical engineering. Following the procedure the paper establishes closed form solutions for creep and relaxation in helical, leaf and disk springs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 2008

O. Pozo1and and N. Olivi‐Tran

A Molecular Dynamics approach has been used to compute the shear force resulting from the shearing of disks. Two‐dimensional mono‐disperse disks have been put in an horizontal and…

Abstract

A Molecular Dynamics approach has been used to compute the shear force resulting from the shearing of disks. Two‐dimensional mono‐disperse disks have been put in an horizontal and rectangular shearing cell with periodic boundary conditions on right and left hand sides. The shear is applied by pulling the cover of the cell either at a constant rate or by pulling a spring, linked to the cover, with a constant force. Depending on the rate of shearing and on the elasticity of the whole set‐up, we showed that the measured shear force signal is either irregular in time, regular in time but not in shape, or regular in shape.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 September 2013

Yuan Kang, De-Xing Peng, Hsing-Han Lee, Sheng-Yan Hu and Yeon-Pun Chang

Constant flow valves have been presented in industrial applications or academic studies, which compensate pressures of bearing recesses as load fluctuates. The flow rate of…

Abstract

Purpose

Constant flow valves have been presented in industrial applications or academic studies, which compensate pressures of bearing recesses as load fluctuates. The flow rate of constant-flow valves (CFVs) can be constant in spite of the pressure changes in recesses. However, specific condition of design parameters must be satisfied. The paper aims to discuss these issues.

Design/methodology/approach

This paper utilizes analytical method to study the static characteristics of CFVs, three types belong to traditional design of CFV are reviewed afresh. Moreover, an innovative design for constant flow is presented and studied.

Findings

The review and study results reveal that appropriate relationships among design parameters for these types of CFVs.

Originality/value

The numerical simulation is used to investigate the influence of design parameters on the change of flow rate when pressure ratio of recess is changed.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2008

Christine Connolly

The purpose of this paper is to explore the applications and technological details of common components – rings and springs.

2229

Abstract

Purpose

The purpose of this paper is to explore the applications and technological details of common components – rings and springs.

Design/methodology/approach

The characteristics and applications of compression springs and then extension springs are investigated, and various finishing techniques are reported. Rings ranging from flat washers to snap‐rings, push‐on rings and Smalley rings are presented.

Findings

The humble spring may be surprisingly high‐tech, with applications in fuel injection, pacemakers and insulin delivery systems. Springs fulfill shock absorption duties as well as securing tasks, and can pre‐load fixtures to withstand thermal expansion and vibration. Retaining rings are used in heavy duty lifting gear and wind turbines, whilst simple washers elegantly combine wear protection with insulation in securing circuit boards.

Originality/value

The paper highlights the continuing development and surprising strengths of some simple components.

Details

Assembly Automation, vol. 28 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 22 November 2011

Giordano Tomassetti, Salvatore Ameduri and Antonio Carozza

The purpose of this paper is to focus on a morphing architecture, conceived to produce droop nose effect, thus preserving high lift performance and laminar flow.

Abstract

Purpose

The purpose of this paper is to focus on a morphing architecture, conceived to produce droop nose effect, thus preserving high lift performance and laminar flow.

Design/methodology/approach

A numerical approach was adopted. On the base of preliminary aerodynamic requirements, the main aspects of the actuation architecture were defined and then assessed through a genetic approach.

Findings

Two different working modalities of mentioned architecture were identified: the former implying the use of an actuator, the latter taking advantage of a tailored elastic element, able to actuate morphing under the action of aerodynamic loads, without the aid of actuators.

Research limitations/implications

The research presented in this work refers to an optimisation process currently tailored on preliminary aerodynamic requirements (leading edge vertical displacement maximisation, leading edge radius increase).

Originality/value

The research shows the possibility of producing morphing on the leading edge zone, actuating droop nose effect on metallic (constant and pice wise thickness) and composite skins.

Details

International Journal of Structural Integrity, vol. 2 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 June 2014

Jeroen De Backer and Gunnar Bolmsjö

This paper aims to present a deflection model to improve positional accuracy of industrial robots. Earlier studies have demonstrated the lack of accuracy of heavy-duty robots when…

1417

Abstract

Purpose

This paper aims to present a deflection model to improve positional accuracy of industrial robots. Earlier studies have demonstrated the lack of accuracy of heavy-duty robots when exposed to high external forces. One application where the robot is pushed to its limits in terms of forces is friction stir welding (FSW). This process requires the robot to deliver forces of several kilonewtons causing deflections in the robot joints. Especially for robots with serial kinematics, these deflections will result in significant tool deviations, leading to inferior weld quality.

Design/methodology/approach

This paper presents a kinematic deflection model, assuming a rigid link and flexible joint serial kinematics robot. As robotic FSW is a process which involves high external loads and a constant welding speed of usually below 50 mm/s, many of the dynamic effects are negligible. The model uses force feedback from a force sensor, embedded on the robot, and predicts the tool deviation, based on the measured external forces. The deviation is fed back to the robot controller and used for online path compensation.

Findings

The model is verified by subjecting an FSW tool to an external load and moving it along a path, with and without deviation compensation. The measured tool deviation with compensation was within the allowable tolerance for FSW.

Practical implications

The model can be applied to other robots with a force sensor.

Originality/value

The presented deflection model is based on force feedback and can predict and compensate tool deviations online.

Details

Industrial Robot: An International Journal, vol. 41 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 October 1947

F.B. Baker

THE normal control surfaces of an aeroplane are the elevator (for pitching); the rudder (for yawing); and the ailerons (for rolling). In certain cases the ailerons may be replaced…

Abstract

THE normal control surfaces of an aeroplane are the elevator (for pitching); the rudder (for yawing); and the ailerons (for rolling). In certain cases the ailerons may be replaced or augmented by spoilers, conveniently placed just in front of the ailerons, or at the same chordal position further inboard.

Details

Aircraft Engineering and Aerospace Technology, vol. 19 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 April 1941

James Hay Stevens

THIS article is complementary to that on the new Junkers constant‐speed air‐screw and is intended to be read in conjunction with it.

Abstract

THIS article is complementary to that on the new Junkers constant‐speed air‐screw and is intended to be read in conjunction with it.

Details

Aircraft Engineering and Aerospace Technology, vol. 13 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 April 2019

Reyhaneh Shekarian, Sayyed Mahdi Hejazi and Mohammad Sheikhzadeh

Knitted fabrics have been widely used in a wide range of applications such as apparel industry. Since these fabrics are continuously subjected to the long-term tensile stresses or…

Abstract

Purpose

Knitted fabrics have been widely used in a wide range of applications such as apparel industry. Since these fabrics are continuously subjected to the long-term tensile stresses or tensile creep in real conditions, investigation of viscoelastic behavior of sewn knitted fabrics would be important especially at the seamed area. The paper aims to discuss this issue.

Design/methodology/approach

A lockstitch machine was used to produce sewn samples by knitted fabric. Factors such as stitch per inch (SPI), thread tension and thread type were variables of the model. Tensile creep tests under constant load of 200 N were conducted, and creep compliance parameter D(t) of samples was obtained as a response variable. A successive residual method (SRM) was also used to characterize viscoelastic properties of sewn-seamed fabrics.

Findings

The instantaneous elastic responses of the seamed samples were less than those of the neat fabric (fabric with no seam). An increase in sewing thread strength increases the instantaneous elastic response of the sample. SPI and thread tension have an optimum value to increase E0. High tenacity polyester thread, due to its higher elastic modulus, caused a larger E0 than polyester/cotton thread in sewn knitted fabric. Characteristics of seam including sewing thread type, SPI and sewing tension have significant influence on T0. Sewn-seamed fabric by high modulus thread shows less viscous strain T0 than the neat fabric (fabric with no seam). Viscous strain T0 decreases as SPI changes from 8 to 4 and/or 12. SPI and thread tension have an optimum value to increase the viscous strain T0. E1 is the same for optimum seamed fabric and fabric sample but T1 is about two times greater for seamed fabric. Retarded time for creep recovery increases by sewing process but characteristics of seam have significant influence on E1 and T1. All sewn knitted fabric samples used in this study could be described by Burger’s model, which is a Maxwell model paralleled with a Kelvin one.

Originality/value

This paper is going to use a different method named successive residuals to model the creep behavior of seamed knitted fabric. On the whole, this paper paved a way to obtain viscoelastic constants of sewn-seamed knitted fabrics based on different sewing parameters such as the modulus of elasticity of the sewing thread, SPI and sewing thread tension.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 June 2022

Afaq Ahmad, Zahoor Ahmad, Abdullah Ullah, Naveed Ur Ur Rehman, Muhammad Israr, Muhammad Zia, Haider Ali and Ataur Rahman

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive…

60

Abstract

Purpose

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive aspects and consequences of every topology are demonstrated. Three topologies of axially magnetized moving-magnet LOA; outer mover, inner mover (IM) and dual stator (DS) are designed and examined. Due to its characteristically high thrust density and more mechanical strength, axially magnetized tubular permanent magnets (PMs) are used in these topologies.

Design/methodology/approach

LOAs are designed and optimized using parametric sweep, in term of design parameters and output parameters like thrust force, stroke and operating resonance frequency of the LOA. All the pros and cons of each topology are investigated and compared. Output parameters of the LOAs are compared using same size of the investigated LOAs. Mover mass, which plays a vital role in resonant operation, is analyzed for IM and DS designs. Investigated LOAs are compared with conventional designs of LOA for compressor in refrigeration system with regards of motor constant, stroke and thrust per PM mass.

Findings

This paper analyzes three topologies of moving-magnet LOAs. The basic difference between investigated LOAs is the radius of tubular-shaped mover from its central axis. All the design parameters are compared and concluded that thrust per PM mass of IMLOA is maximum. OMLOA provides maximum motor constant of value 180 N/A. DSLOA provides thrust force with motor constant 120 N/A and required intermediate materials of PMs. All the three designs give the best results in terms of motor constant and thrust per PM mass, compared to conventional designs of LOA.

Originality/value

This paper determines the impact of mover position from its central axis in a tubular-shaped moving-magnet LOA. This work is carried out in correspondence of latest papers of LOA.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 13000