Search results

1 – 10 of over 3000
Article
Publication date: 10 June 2014

Jeroen De Backer and Gunnar Bolmsjö

This paper aims to present a deflection model to improve positional accuracy of industrial robots. Earlier studies have demonstrated the lack of accuracy of heavy-duty robots when…

1417

Abstract

Purpose

This paper aims to present a deflection model to improve positional accuracy of industrial robots. Earlier studies have demonstrated the lack of accuracy of heavy-duty robots when exposed to high external forces. One application where the robot is pushed to its limits in terms of forces is friction stir welding (FSW). This process requires the robot to deliver forces of several kilonewtons causing deflections in the robot joints. Especially for robots with serial kinematics, these deflections will result in significant tool deviations, leading to inferior weld quality.

Design/methodology/approach

This paper presents a kinematic deflection model, assuming a rigid link and flexible joint serial kinematics robot. As robotic FSW is a process which involves high external loads and a constant welding speed of usually below 50 mm/s, many of the dynamic effects are negligible. The model uses force feedback from a force sensor, embedded on the robot, and predicts the tool deviation, based on the measured external forces. The deviation is fed back to the robot controller and used for online path compensation.

Findings

The model is verified by subjecting an FSW tool to an external load and moving it along a path, with and without deviation compensation. The measured tool deviation with compensation was within the allowable tolerance for FSW.

Practical implications

The model can be applied to other robots with a force sensor.

Originality/value

The presented deflection model is based on force feedback and can predict and compensate tool deviations online.

Details

Industrial Robot: An International Journal, vol. 41 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 October 2011

Mohammad Ghane, Iman Azimpour and Seyed A. Hosseini Ravandi

The purpose of this paper is to establish a simple and practical elastica model for the deflection of weft (warp) in a plain wave fabric.

Abstract

Purpose

The purpose of this paper is to establish a simple and practical elastica model for the deflection of weft (warp) in a plain wave fabric.

Design/methodology/approach

The weft yarn is considered as an elastic beam fixed supported at the ends and deflected in the middle by a vertical load. An analytical model, based on the elastic theory and small deflection case is adopted to study the factors affecting the deflection of the yarn. To investigate the model, yarns with different rigidities are used. A total of five different yarn counts are produced in the same ring spinning system and then used as weft yarn in a plain weave fabric. All other parameters of the yarns and the fabrics are kept identical. Fresh fabrics are analyzed and the maximum deflection of the weft is measured using the microscope. The actual curves of the deflected weft are then compared with the theoretical curves.

Findings

The experimental curves show to agree well with the theoretical model. The results also show that as yarn linear density decreases, the deflection increases.

Originality/value

The paper shows that while the large deformation “elastica” theory is typically used for woven fabric modeling, the small deflection theory can be useful for rapid computation.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 December 2022

Kuharaaj Govindan and Niko Bier

This study aims to predict dynamic responses of aileron and spoiler control surfaces in subsonic flight via the use of surrogate models. The prepared reduced order models prove…

Abstract

Purpose

This study aims to predict dynamic responses of aileron and spoiler control surfaces in subsonic flight via the use of surrogate models. The prepared reduced order models prove useful when quick estimations for a large number of variations are required.

Design/methodology/approach

The linear frequency domain (LFD) method was used for the simulation study. Each surrogate contained a database of 100 control surface dynamic responses over a spectrum of 200 harmonics computed with LFD. To interpolate new results, the DLR surrogate modelling toolbox, SMARTy, was used. The database’s samples were prepared in a Halton sequence, making interpolation reliable. The surrogate’s parameter space was the Mach number, Reynold’s number, angle of attack, control surface deflection angle and the control surface chord length.

Findings

The LFD method proved effective for the mentioned purpose: the surrogates were accurate, up to 15% of relative error, in reproducing dynamic responses of aileron and spoiler deflections at low speed, within the limitations of flow field linearity, as well as surrogate prediction capability. The restrictions of the surrogate, and the reasoning thereof, are also presented in detail in the study. Future load alleviation studies are a potential of the findings here.

Originality/value

LFD is an innovative technique for load prediction and alleviation studies. This paper provides a reference for engineers wishing to use the method for the two mentioned control surfaces, or the like.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess…

Abstract

Purpose

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess the load-carrying capacity of reinforced concrete (RC) beams under two-point monotonic static loadings.

Design/methodology/approach

Four quarter-size FE models with load and geometry symmetry conditions were constructed, the load-bearing capacity and associated mid-span deflections at critical points are verified against the full-scale experimental RC beams available in the literature. These developed FE models incorporated the tension stiffening effects and bond–slip behaviour. Theoretical analyses based on Indian standard code IS: 456–2000 and ACI 318–19 were also carried to verify the experimental and numerical predicted moments at critical loading points.

Findings

The load-deflection curves predicted through FE models exhibit closer corroboration with the experimental curves throughout the loading history. The contour plots for deflections, concrete principal stresses, reinforcement yield stresses are satisfactorily predicted by the FE models, which reveal the complete information of nonlinear behaviour of RC beams. The developed model well captured the initial and progressive crack patterns at each load increments.

Practical implications

The FE modelling is an efficient, valid and economical tool that is an alternative to the expensive experimental program and can be used to explore, analyse and fully understand the nonlinear response of RC beams under static loadings.

Originality/value

The ultimate moment capacity evaluated based on ACI 318–19 code provision show a better correlation with the experimental data as compared to the IS: 456–2000 code provision. The ultimate loads and associated centre-span deflections predicted by RN-2, RN-3, RB-12 and RB-16 FE model show a discrepancy of 1.66 and –0.49%, –4.68 and –0.60%, –9.38 and –14.53% and –4.37 and 4.21%, respectively, against the experimental results, which reveals that the developed ANSYS FE models predict consistent results and achieved a reasonable agreement with the experimental data.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 April 2022

Mhd Anwar Orabi, Jin Qiu, Liming Jiang and Asif Usmani

Reinforced concrete slabs in fire have been heavily studied over the last three decades. However, most experimental and numerical work focuses on long-duration uniform exposure to…

Abstract

Purpose

Reinforced concrete slabs in fire have been heavily studied over the last three decades. However, most experimental and numerical work focuses on long-duration uniform exposure to standard fire. Considerably less effort has been put into investigating the response to localised fires that result in planarly non-uniform temperature distribution in the exposed elements.

Design/methodology/approach

In this paper, the OpenSees for Fire framework for modelling slabs under non-uniform fire exposure is presented, verified against numerical predictions by Abaqus and then validated against experimental tests. The thermal wrapper developed within OpenSees for Fire is then utilised to apply localised fire exposure to the validated slab models using the parameters of an experimentally observed localised fire. The effect of the smoke layer is also considered in this model and shown to significantly contribute to the thermal and thus thermo-mechanical response of slabs. Finally, the effect of localised fire heat release rate (HRR) and boundary conditions are studied.

Findings

The analysis showed that boundary conditions are very important for the response of slabs subject to localised fire, and expansive strains may be accommodated as deflections without severely damaging the slab by considering the lateral restraint.

Originality/value

This work demonstrates the capabilities of OpenSees for Fire in modelling structural behaviours subjected to non-uniform fire conditions and investigates the damage pattens of flat slabs exposed to localised fires. It is an advancing step towards understanding structural responses to realistic fires.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 9 November 2018

Komlan Kolegain, François Leonard, Sandra Chevret, Amarilys Ben Attar and Gabriel Abba

Robotic friction stir welding (RFSW) is an innovative process which enables solid-state welding of aluminum parts using robots. A major drawback of this process is that the robot…

225

Abstract

Purpose

Robotic friction stir welding (RFSW) is an innovative process which enables solid-state welding of aluminum parts using robots. A major drawback of this process is that the robot joints undergo elastic deformation during the welding, because of the high forces induced by the process. This leads to tool deviation and incorrect orientation. There is currently no computer-aided manufacturing/computer-aided design (CAD) software for generating off-line paths which integrates robot deflections, and the main purpose of this study is to propose an off-line methodology to plan a path for RFSW with the integration of the deflections.

Design/methodology/approach

The approach is divided into two steps. The first step consists of extracting position and orientation data from CAD models of the workpieces and adding the deflections calculated with a deflection model to generate a suitable path for performing RFSW. The second step consists of the smooth fitting of the suitable path using Bézier curves.

Findings

The method is experimentally validated by welding a curved workpiece using a Kuka KR500-2MT robot. A suitable tool position and orientation were calculated to perform this welding, an experimental procedure was set up, a defect-free weld was performed and a high accuracy was achieved in terms of position and orientation.

Practical implications

This method can help manufacturers to easily perform RFSW for three-dimensional workpieces regardless of the lateral tool deviation, loss of the right orientation and control force stability.

Originality/value

The originality of this method lies in compensating for robot deflections without using expensive sensors, which is the most commonly used method for compensating for robot deflection. This off-line method can lead to a reduction in programming time in comparison with teach programming method and leads to reduced investment costs in comparison with commercial off-line programming packages.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 June 2021

Qianyun Zhang, Julie M. Vandenbossche and Amir H. Alavi

Unbonded concrete overlays (UBOLs) are commonly used in pavement rehabilitation. The current models included in the Mechanistic-Empirical Pavement Design Guide cannot properly…

Abstract

Purpose

Unbonded concrete overlays (UBOLs) are commonly used in pavement rehabilitation. The current models included in the Mechanistic-Empirical Pavement Design Guide cannot properly predict the structural response of UBOLs. In this paper, a multigene genetic programming (MGGP) approach is proposed to derive new prediction models for the UBOLs response to temperature loading.

Design/methodology/approach

MGGP is a promising variant of evolutionary computation capable of developing highly nonlinear explicit models for characterizing complex engineering problems. The proposed UBOL response models are formulated in terms of several influencing parameters including joint spacing, radius of relative stiffness, temperature gradient and adjusted load/pavement weight ratio. Furthermore, linear regression models are developed to benchmark the MGGP models.

Findings

The derived design equations accurately characterize the UBOLs response under temperature loading and remarkably outperform the regression models. The conducted parametric analysis implies the efficiency of the MGGP-based model in capturing the underlying physical behavior of the UBOLs response to temperature loading. Based on the results, the proposed models can be reliably deployed for design purposes.

Originality/value

A challenge in the design of UBOLs is that their interlayer effects have not been directly considered in previous design procedures. To achieve better performance predictions, it is necessary to capture the effect of the interlayer in the design process. This study addresses this important issue via developing new models that can efficiently account for the effects of interlayer on the stress and deflections. In addition, it provides an insight into the effect of several parameters influencing the deflections of the UBOLs. From a computing perspective, a powerful evolutionary computation technique is introduced that overcomes the shortcomings of existing machine learning methods.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 19 October 2012

Dawn T. Robinson, Jody Clay-Warner, Christopher D. Moore, Tiffani Everett, Alexander Watts, Traci N. Tucker and Chi Thai

Purpose – This paper proposes a new procedure for measuring affective responses during social interaction using facial thermographic imaging.Methodology – We first describe the…

Abstract

Purpose – This paper proposes a new procedure for measuring affective responses during social interaction using facial thermographic imaging.

Methodology – We first describe the results of several small pilot experiments designed to develop and refine this new measure that reveal some of the methodological advantages and challenges offered by this measurement approach. We then demonstrate the potential utility of this measure using data from a laboratory experiment (N=114) in which we used performance feedback to manipulate identity deflection and measured several types of affective responses – including self-impressions and emotions.

Findings – We find warming of the brow (near the corrugator muscle) and cheek (near the zygomatic major muscle) related most strongly to emotion valence and self-potency, with those whose brows and cheeks warmed the most feeling less positive emotion and less potent self-impressions. Warming in the eye area (near the orbicularis oculi) related most closely to undirected identity deflection and to positive self-sentiments. Positive self-views and strong identity disruptions both contributed to warming of the eyes.

Implications – The rigor of contemporary sociological theories of emotion exceeds our current ability to empirically test these theories. Facial thermographic imaging may offer sociologists new assessments of affect and emotion that are ecologically valid, socially unreactive, temporally sensitive, and accurate. This could dramatically improve our ability to test and develop affect based theories of social interaction.

Details

Biosociology and Neurosociology
Type: Book
ISBN: 978-1-78190-257-8

Keywords

Article
Publication date: 13 November 2018

Katie Graham, Lara Chow and Stephen Fai

Over the past decade, national and international organisations concerned with regulating the architecture, engineering, construction and operations industry have been working to…

Abstract

Purpose

Over the past decade, national and international organisations concerned with regulating the architecture, engineering, construction and operations industry have been working to create guidelines for the integration of building information modelling (BIM) through the establishment of benchmarks to measure the quality and quantity of information in a given model. Until recently, these benchmarks – and BIM guidelines in general – have been developed for the design and construction of new projects, providing very little guidance for using BIM in the context of conservation and rehabilitation. The purpose of this paper is to introduce a new benchmark specific to existing and heritage buildings developed by Carleton Immersive Media Studio (CIMS).

Design/methodology/approach

To create the new benchmark, CIMS conducted a critical evaluation of established and emerging BIM guidelines including: Level of Development Specification 2016 (BIMFORUM), architecture, engineering and construction (Can) BIM Protocol (CanBIM), PAS 1102-2: Specification for Information Management for the Capital Delivery Phase of Construction Projects Using BIM (British Standards Institution) and Level of Accuracy Specification Guide (US Institute of Building Documentation).

Findings

Using the authors’ on-going work at the Parliament Hill National Historic Site in Ottawa, Canada, the CIMS created and applied a three-category system that evaluated the level of detail, information and accuracy within the building information model independently.

Originality/value

In this paper, the authors discuss the CIMS’ work to date and propose next steps.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 8 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

1 – 10 of over 3000