Search results

1 – 10 of over 21000
Article
Publication date: 1 May 2020

Suneetha Ch, Srinivasa Rao S and K.S. Ramesh

Electronic devices aid communication during new communication phases and the scope of cognitive radio networks has changed communication paradigms through efficient use of…

Abstract

Purpose

Electronic devices aid communication during new communication phases and the scope of cognitive radio networks has changed communication paradigms through efficient use of spectrums. The communication prototype of cognitive radio networks defines user roles as primary user and secondary user in the context of the spectrum allocation and use. The users who have licensed authority of the spectrum are denoted as primary users, while other eligible users who access the corresponding spectrum are secondary users.

Design/methodology/approach

The multiple factors of transmission service quality can have a negative influence due to improper scheduling of spectrum bands between primary users and secondary users. There are considerable contributions in contemporary literature concerning spectrum band scheduling under spectrum sensing. However, the majority of the scheduling models are intended to manage a limited number of transmission service quality factors. Moreover, these service quality factors are functional and derived algorithmically from the current corresponding spectrum. However, there is evidence of credible performance deficiency regarding contemporary spectrum sensing methods

Findings

This article intends to portray a fuzzy guided integrated factors-based spectrum band sharing within the spectrum used by secondary users. This study attempts to explain the significance of this proposal compared to other contemporary models.

Originality/value

This article intends to portray a fuzzy guided integrated factors-based spectrum band sharing within the spectrum used by secondary users. This study attempts to explain the significance of this proposal compared to other contemporary models.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 2 February 2021

D. Srikar and Sundru Anuradha

This study aims to propose a two-element multi-input-multi-output (MIMO) antenna for cognitive radio MIMO applications to avoid the complexities involved in reconfigurable…

Abstract

Purpose

This study aims to propose a two-element multi-input-multi-output (MIMO) antenna for cognitive radio MIMO applications to avoid the complexities involved in reconfigurable antennas and improve the spectrum utilization efficiency.

Design/methodology/approach

The proposed MIMO antenna system comprises a wideband antenna that operates at 2 GHz–12 GHz for sensing the spectrum and four pairs of antennas for communication, which are single and dual-band antennas. Each pair of antennas meant for communication consists of two similar antennas. Moreover, the antennas meant for communication cover 93% of the bandwidth of the sensing antenna.

Findings

The first pair of antennas accessible at ports P2 and P6 and the second pair of antennas accessible at ports P4 and P8, which are dual-band antennas, operate at 3.05 GHz–3.85 GHz, 5.8 GHz–8 GHz and 2.05 GHz–2.55 GHz, 4.7 GHz–6.1 GHz, respectively. While the third pair of antennas accessible at ports P3 and P7 and the fourth pair of antennas accessible at ports P5 and P9 are single-band antennas and operate at 3.85 GHz–4.7 GHz and 8 GHz–11 GHz, respectively. Minimum isolations of 20 dB and 15 dB are attained between every two similar antennas for communication and between the sensing antenna and the antennas meant for communication, respectively. The correctness of the proposed antenna is verified with a fine match between the results obtained from simulations and measurements.

Originality/value

The proposed MIMO antenna possesses salient features, such as polarization diversity and performing a maximum of four communication tasks when all the white spaces are detected.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 12 November 2021

D. Vijaya Saradhi, Swetha Katragadda and Hima Bindu Valiveti

A huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of…

49

Abstract

Purpose

A huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of application scenarios. The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time.

Design/methodology/approach

The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time. Therefore, the technology of cognitive radio (CR) is considered as one of the efficient solutions for addressing the drawbacks of spectrum distribution whereas the secondary user (SU) performance is significantly influenced by the spatiotemporal instability of spectrum.

Findings

As a result, the technique of the hybrid filter detection network model (HFDNM) is suggested in this research work under various SU relationships in the networks of CR. Furthermore, a technique of hybrid filter detection was recommended in this work to enhance the performance of idle spectrum applications. When compared to other existing techniques, the suggested research work achieves enhanced efficiency with respect to both throughputs as well as delay.

Originality/value

The proposed HFDNM improved the transmission delay at 3 SUs with 0.004 s/message and 0.008 s/message when compared with existing NCNC and NNC methods in case of number of SUs and also improved 0.02 s/message and 0.08 s/message when compared with the existing methods of NCNC and NNC in case of channel loss probability at 0.3.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Book part
Publication date: 16 January 2024

Ayodeji E. Oke and Seyi S. Stephen

This chapter presented cognitive radio networks in construction. The construction industry requires an efficient bandwidth of wireless technology for effectiveness without delay…

Abstract

This chapter presented cognitive radio networks in construction. The construction industry requires an efficient bandwidth of wireless technology for effectiveness without delay. The persistence of challenges with the investment in third generation is a great concern, and this chapter identified investing in fifth generation (as an alternative) to enlarge bandwidth for better effectiveness that is capable of dealing with unavailable or scarcity of radio spectrum. The application of fifth generation will permit efficient utilisation of the radio spectrum by the primary and secondary users to detect the spectrum parameters which will highlight the direct and adequate interaction with the radio channel. This chapter further considered the usage of this technology as it relates to permitting sharing of sense in the spectrum.

Article
Publication date: 21 August 2019

Hiren K. Mewada and Jitendra Chaudhari

The digital down converter (DDC) is a principal component in modern communication systems. The DDC process traditionally entails quadrature down conversion, bandwidth reducing…

Abstract

Purpose

The digital down converter (DDC) is a principal component in modern communication systems. The DDC process traditionally entails quadrature down conversion, bandwidth reducing filters and commensurate sample rate reduction. To avoid group delay, distortion linear phase FIR filters are used in the DDC. The filter performance specifications related to deep stopband attenuation, small in-band ripple and narrow transition bandwidth lead to filters with a large number of coefficients. To reduce the computational workload of the filtering process, filtering is often performed as a two-stage process, the first stage being a down sampling Hoegenauer (or cascade-integrated comb) filter and a reduced sample rate FIR filter. An alternative option is an M-Path polyphase partition of a band cantered FIR filter. Even though IIR filters offer reduced workload to implement a specific filtering task, the authors avoid using them because of their poor group delay characteristics. This paper aims to propose the design of M-path, approximately linear phase IIR filters as an alternative option to the M-path FIR filter.

Design/methodology/approach

Two filter designs are presented in the paper. The first approach uses linear phase IIR low pass structure to reduce the filter’s coefficient. Whereas the second approach uses multipath polyphase structure to design approximately linear phase IIR filter in DDC.

Findings

The authors have compared the performance and workload of the proposed polyphase structured IIR filters with state-of-the-art filter design used in DDC. The proposed design is seen to satisfy tight design specification with a significant reduction in arithmetic operations and required power consumption.

Originality/value

The proposed design is an alternate solution to the M-path polyphase FIR filter offering very less number of coefficients in the filter design. Proposed DDC using polyphase structured IIR filter satisfies the requirement of linear phase with the least number of computation cost in comparison with other DDC structure.

Details

Circuit World, vol. 45 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Content available
65

Abstract

Details

Sensor Review, vol. 26 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 December 2019

Mahua Bhowmik and P. Malathi P. Malathi

Cognitive radio (CR) plays a very important role in enabling spectral efficiency in wireless communication networks, where the secondary user (SU) allows the licensed primary…

Abstract

Purpose

Cognitive radio (CR) plays a very important role in enabling spectral efficiency in wireless communication networks, where the secondary user (SU) allows the licensed primary users (PUs). The purpose of this paper is to develop a prediction model for spectrum sensing in CR.

Design/methodology/approach

This paper proposes a hybrid prediction model, called krill-herd whale optimization-based actor critic neural network and hidden Markov model (KHWO-ACNN-HMM). The spectral bands are determined optimally using the proposed hybrid prediction model for allocating the spectrum bands to the PUs. For better sensing, the eigenvalue based on cooperative sensing used in CR. Finally, a hybrid model is designed by hybridizing KHWO-ACNN and HMM to enhance the accuracy of sensing. The predicted results of KHWO-ACNN and HMM are combined by a fusion model, for which a weighted entropy fusion is employed to determine the free spectrum available in CRs.

Findings

The performance of the prediction model is evaluated based on metrics, such as probability of detection, probability of false alarm, throughput and sensing time. The proposed spectrum sensing method achieves maximum probability of detection of 0.9696, minimum probability of false alarm rate as 0.78, minimum throughput of 0.0303 and the maximum sensing time of 650.08 s.

Research implications

The proposed method is useful in various applications, including authentication applications, wireless medical networks and so on.

Originality/value

A hybrid prediction model is introduced for energy efficient spectrum sensing in CR and the performance of the proposed model is evaluated with the existing models. The proposed hybrid model outperformed the other techniques.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 21 December 2017

Wenli Zhang, Fengchun Tian, An Song, Zhenzhen Zhao, Youwen Hu and Anyan Jiang

This paper aims to propose an odor sensing system based on wide spectrum for e-nose, based on comprehensive analysis on the merits and drawbacks of current e-nose.

Abstract

Purpose

This paper aims to propose an odor sensing system based on wide spectrum for e-nose, based on comprehensive analysis on the merits and drawbacks of current e-nose.

Design/methodology/approach

The wide spectral light is used as the sensing medium in the e-nose system based on continuous wide spectrum (CWS) odor sensing, and the sensing response of each sensing element is the change of light intensity distribution.

Findings

Experimental results not only verify the feasibility and effectiveness of the proposed system but also show the effectiveness of least square support vector machine (LSSVM) in eliminating system errors.

Practical implications

Theoretical model of the system was constructed, and experimental tests were carried out by using NO2 and SO2. System errors in the test data were eliminated using the LSSVM, and the preprocessed data were classified by euclidean distance to centroids (EDC), k-nearest neighbor (KNN), support vector machine (SVM), LSSVM, respectively.

Originality/value

The system not only has the advantages of current e-nose but also realizes expansion of sensing array by means of light source and the spectrometer with their wide spectrum, high resolution characteristics which improve the detection accuracy and realize real-time detection.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 February 2019

Girraj Sharma and Ritu Sharma

This paper aims to discuss over imperfect reporting channel the performance of cooperative spectrum sensing (CSS). It is investigated that imperfect reporting channel introduces…

Abstract

Purpose

This paper aims to discuss over imperfect reporting channel the performance of cooperative spectrum sensing (CSS). It is investigated that imperfect reporting channel introduces some lower bound in false alarm probability (Pf). The lower bound of probability of false alarm linearly increases with the probability of reporting error.

Design/methodology/approach

To solve this problem, a transmit diversity-based CSS method is proposed, and to improve the detection performance, square law selection (SLS) diversity is used.

Findings

It is observed that detection probability increases up to 11.55 per cent when SLS diversity is applied, and lower bound Qf decreases up to 80 per cent when transmit diversity is applied.

Originality/value

No literature is available to the best of the authors’ knowledge that measures the performance of CSS with respect to parameters as reported in this paper.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2016

Johannes Kruys, Peter Anker and Roel Schiphorst

The purpose of this paper is to investigate the possibility to replace radio equipment compliance requirements based on equipment parameters with a set of simple metrics that…

Abstract

Purpose

The purpose of this paper is to investigate the possibility to replace radio equipment compliance requirements based on equipment parameters with a set of simple metrics that accurately reflects spectrum utilization and spectrum-sharing efficiency.

Design/methodology/approach

The approach taken is to go back to the basic factors that determine radio system behavior in a shared spectrum environment: radio frequency power, duty cycle and frequency occupation. By normalizing these parameters, device specificity is avoided and a statistical perspective on spectrum utilization and sharing becomes possible.

Findings

The analysis shows that two technology-neutral metrics would be adequate to govern spectrum utilization and sharing: a spectrum utilization metric and a spectrum-sharing efficiency metric. These metrics form the core of regulatory requirements for shared frequency bands. Each shared frequency band could be assigned criteria based on these metrics that take into account the types of applications for which that band will be used.

Research limitations/implications

This work is a first step that identifies the main factors that affect shared spectrum usage from a statistical point of view. More work is needed on the relationship between real-world interference and its abstraction in the spectrum-sharing rules.

Practical implications

The metrics proposed could be considered as the basis for a new approach to the regulation of the license-exempt spectrum, and, by extension, as the basis for generic compliance criteria. Their use would facilitate the compliance assessment of software-defined radio technology.

Social implications

This work has no direct social implications.

Originality/value

This paper combines new work on spectrum utilization criteria with extensions of previous work on spectrum-sharing efficiency into a comprehensive proposal for a new approach to the regulation of the license-exempt spectrum.

1 – 10 of over 21000