Search results

1 – 10 of 109
Article
Publication date: 30 December 2022

Subbarama Kousik Suraparaju, Arjun Singh K., Vijesh Jayan and Sendhil Kumar Natarajan

The utilisation of renewable energy sources for generating electricity and potable water is one of the most sustainable approaches in the current scenario. Therefore, the current…

Abstract

Purpose

The utilisation of renewable energy sources for generating electricity and potable water is one of the most sustainable approaches in the current scenario. Therefore, the current research aims to design and develop a novel co-generation system to address the electricity and potable water needs of rural areas.

Design/methodology/approach

The cogeneration system mainly consists of a solar parabolic dish concentrator (SPDC) system with a concentrated photo-voltaic module at the receiver for electricity generation. It is further integrated with a low-temperature thermal desalination (LTTD) system for generating potable water. Also, a novel corn cob filtration system is introduced for the pre-treatment to reduce the salt content in seawater before circulating it into the receiver of the SPDC system. The designed novel co-generation system has been numerically and experimentally tested to analyse the performance at Karaikal, U.T. of Puducherry, India.

Findings

Because of the pre-treatment with a corn cob, the scale formation in the pipes of the SPDC system is significantly reduced, which enhances the efficiency of the system. It is observed that the conductivity, pH and TDS of seawater are reduced significantly after the pre-treatment by the corncob filtration system. Also, the integrated system is capable of generating 6–8 litres of potable water per day.

Originality/value

The integration of the corncob filtration system reduced the scaling formation compared to the general circulation of water in the hoses. Also, the integrated SPDC and LTTD systems are comparatively economical to generate higher yields of clean water than solar stills.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 December 2022

Mohammad Fathi, Roya Amjadifard, Farshad Eshghi and Manoochehr Kelarestaghi

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs…

Abstract

Purpose

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs. Alongside designing more efficient solar panels, installing solar trackers and special circuitry for optimizing power delivery to the load according to a maximum power point tracking (MPPT) algorithm are other ways of increasing efficiency. However, it is critical for any efficiency increase to account for the power consumption of any amendments. Therefore, this paper aims to propose a novel tracker while using MPPT to boost the PV system's actual efficiency accounting for the involved costs.

Design/methodology/approach

The proposition is an experimental pneumatic dual-axis solar tracker using light-dependent resistor (LDR) sensors. Due to its embedded energy storage, the pneumatic tracker offers a low duty-cycle operation leading to tracking energy conservation, fewer maintenance needs and scalability potential. While MPPT assures maximum load power delivery, the solar PV's actual delivered power is calculated for the first time, accounting for the solar tracking and MPPT power costs.

Findings

The experiments' results show an increase of 37.6% in total and 35.3% in actual power production for the proposed solar tracking system compared to the fixed panel system, with an MPPT efficiency of 90%. Thus, the pneumatic tracking system offers low tracking-energy consumption and good actual power efficiency. Also, the newly proposed pneumatic stimulant can significantly simplify the tracking mechanism and benefit from several advantages that come along with it.

Originality/value

To the best of the authors’ knowledge, this work proposes, for the first time, a single-motor pneumatic dual-axis tracker with less implementation cost, less frequent operation switching and scalability potential, to be developed in future works. Also, the pneumatic proposal delivers high actual power efficiency for the first time to be addressed.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Expert briefing
Publication date: 18 April 2024

In March, Sonelgaz awarded 19 contracts for the installation of almost 3 gigawatts of solar power generation capacity. Increasing the renewables mix in Algeria's energy balance…

Details

DOI: 10.1108/OXAN-DB286498

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 26 April 2024

Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…

Abstract

Purpose

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.

Design/methodology/approach

The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.

Findings

The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.

Originality/value

Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 May 2024

Vishnu C.R. and Joshin John

Research on solar energy adoption offers a multidimensional scope and warrants exploration from multiple perspectives, including political, economic, management, behavioral…

Abstract

Purpose

Research on solar energy adoption offers a multidimensional scope and warrants exploration from multiple perspectives, including political, economic, management, behavioral, policy and innovation aspects. The aim of this paper is to comprehensively consolidate major research findings on the premise of solar energy adoption and to disclose gaps in the existing literature.

Design/methodology/approach

A bibliometric analysis of the vast literature is conducted on 1,009 meticulously shortlisted articles following the semi-systematic literature review methodology. A text analytics tool named BibExcel is used for synthesizing the literature, and the results are visualized using Gephi, Pajek and a spreadsheet application.

Findings

This paper reports the evolution of research in the selected domain. It is noted that research in this domain was primarily concentrated on four broad themes, namely, peer effects and spatial patterns, public perceptions, policies and economics and technological evolution. The analysis further reveals the merging of two of these themes as a result of transdisciplinary research and also projects future research trends emphasizing political interventions in technological evolution and diffusion.

Originality/value

Research trends and future research scope are identified and discussed in detail. The information revealed from the analysis, along with the research implications, will assist policymakers in noting the flaws in the current doctrines and practices, entrepreneurs in understanding potential enablers and barriers influencing solar energy adoption and budding scholars in comprehending the current research status and framing promising research objectives to close the existing research gaps.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 31 March 2023

Tapas Kumar Mohapatra and Asim Kumar Dey

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to…

Abstract

Purpose

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to eliminate both sub and inter harmonics (SIH) and electromagnetic interference (EMI). The total harmonic distortion (THD) of the load current also reduces in comparison to standard HCCT and modified technique-based existing HCCT.

Design/methodology/approach

Matlab simulation has been carried out to develop an SPVSI model and the unique algorithm-based HCCT. The same platform has also been used to develop a few existing HCCTs such as standard, dual-band and modified. The switching frequency and harmonic analysis of load currents for all the HCCTs have been compared in the paper. The hardware implementation of the proposed algorithm-based HCCT was also verified and compared with the simulation results.

Findings

The proposed unique algorithm-based HCCT provides the benefits of both unipolar and bipolar switching techniques. It reduces the switching frequency as unipolar switching scheme and eliminates the EMI. It also reduces THD and nullifies SIH of the load current. This enables an improvement in the overall performance and efficiency of the motor.

Practical implications

This proposed HCCT eliminates the SIH and improves the overall efficiency of the motor, hence can prevent overheating, vibration, acoustic noise, pulsating torque and braking of the rotor shaft of the motor and increasing the reliability of the system.

Social implications

It can be implemented for the motors that are used in household applications and electric vehicles through one-phase inverter.

Originality/value

This proposed HCCT has detected the zero crossing point of reference current, allowed samples and shifted the necessary amount of hysteresis band at zero crossing region to eliminate SIH and THD.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 17 May 2024

Sanjukta Niyogi and Soumyananda Dinda

Clean energy is the most demanding issue for sustainable development, especially in post-COVID-19 scenario. The Government of India (GOI) has adopted various reform policies in…

Abstract

Clean energy is the most demanding issue for sustainable development, especially in post-COVID-19 scenario. The Government of India (GOI) has adopted various reform policies in the energy sector focusing on Sustainable Development Goal 7 (SDG 7). India has taken initiative on SDG 7 to ensure access to sustainable energy for all. The core interest area of this paper is to analyse recent energy reform policies in energy sectors covering power generation, transmission, distribution and consumption and discusses mechanism SDG target achievement within 2030 in India. In the COVID-19 pandemic scenario, every country faces a major issue of energy security since the undisrupted energy security is related to energy demand. In the time period of pandemic, industrial energy demand goes down rapidly all over the world, especially in India. Though in the eve of festive season in India the difference between the energy supply and demand slightly overcomes. In the year 2003, GOI through Electricity Act opened electricity market for private participation to increase efficiencies. In the COVID-19 pandemic scenario, every country faces a major issue of energy security since the undisrupted energy security is related to energy demand. Further, the Ministry of Power has taken several policies such as National Electrification Policy in 2005, National Tariff Policy, Rural Electrification Policy in 2009 and Integrated Energy Policy. This policy brief paper highlights the progress of clean energy in India and provides their future trajectory towards achieving SDG targets, especially in the period of COVID-19 pandemic.

Details

International Trade, Economic Crisis and the Sustainable Development Goals
Type: Book
ISBN: 978-1-83753-587-3

Keywords

Book part
Publication date: 17 May 2024

Paramita Dasgupta and Tapan Kumar Ghosh

Sustainable development goals (SDGs) designed by the United Nations include ‘universal and equitable access to affordable, reliable and clean energy’ as one of the pathways to…

Abstract

Sustainable development goals (SDGs) designed by the United Nations include ‘universal and equitable access to affordable, reliable and clean energy’ as one of the pathways to achieve a better and more sustainable future by 2030. Universal access to electricity, clean cooking fuel, increasing share of renewable resources and improving energy efficiency are the key components of SDG7. In India, the government has undertaken targeted programmes to ensure full electrification of households and greater use of liquid petroleum gas (LPG) for clean cooking replacing traditional solid biomass fuels in poor households. Installed capacity targets are set to raise the share of renewable resources in total energy mix along with the policies undertaken to make it cost-competitive (SDG India, 2019–2020). However, the economic crisis experienced by India during COVID-19 pandemic is likely to affect this ongoing drive towards clean energy use. Sudden fall in income and loss of employment particularly in the unorganised sector might have made the poor rural households vulnerable to reversion to their traditional cooking fuels. The renewable sector has also faced uncertainties due to halted construction works and disrupted global supply chains during lockdown. The present chapter discusses these pertinent issues crucial for achieving SDGs. It investigates how far the COVID-19-driven economic crisis has delayed India's clean cooking fuel programme for different states. It further examines the impact of COVID-19 lockdown on renewable energy sector, particularly on the solar energy sector. The study suggests some policy measures for a robust recovery, ensuring transition towards clean energy use and sustainable growth to protect the environment.

Details

International Trade, Economic Crisis and the Sustainable Development Goals
Type: Book
ISBN: 978-1-83753-587-3

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 April 2024

Pabitra Kumar Das, Mohammad Younus Bhat, Sonal Gupta and Javeed Ahmad Gaine

This study aims to examine the links between carbon emissions, electric vehicles, economic growth, energy use, and urbanisation in 15 countries from 2010 to 2020.

Abstract

Purpose

This study aims to examine the links between carbon emissions, electric vehicles, economic growth, energy use, and urbanisation in 15 countries from 2010 to 2020.

Design/methodology/approach

This study adopts seminal panel methods of moments quantile regression with fixed effects to trace the distributional aspect of the relationship. The reliability of methods is confirmed via fully modified ordinary least squares coefficients.

Findings

This study reveals that fossil fuel use, economic activity, and urbanisation negatively impact environmental quality, whereas renewable energy sources have a significant positive long-term effect on environmental quality in the selected panel of countries.

Research limitations/implications

The main limitation of this study is the generalisability of the findings, as the study is confined to a limited number of countries, and focuses on non-renewable and renewable energy sources.

Practical implications

Finally, this study proposes several policy recommendations for decision-makers and policymakers in the 15 nations to address climate change, boost sales of electric vehicles, and increase the use of renewable energy sources.

Originality/value

This study calls for a comprehensive transition towards green energy in the transportation sector, enhancing economic growth, fostering employment opportunities, and improving environmental quality.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 10 of 109