Search results

1 – 5 of 5
Article
Publication date: 10 April 2017

Mica Grujicic, Jennifer Snipes and S. Ramaswami

In order to help explain experimental findings related to the stabbing- and ballistic-penetration resistance of flexible body-armor, single-yarn pull-out tests, involving…

Abstract

Purpose

In order to help explain experimental findings related to the stabbing- and ballistic-penetration resistance of flexible body-armor, single-yarn pull-out tests, involving specially prepared fabric-type test coupons, are often carried out. The purpose of this paper is to develop a finite-element-based computational framework for the simulation of the single-yarn pull-out test, and applied to the case of Kevlar® KM2 fabric.

Design/methodology/approach

Three conditions of the fabric are considered: neat, i.e, as-woven; polyethylene glycol (PEG)-infiltrated; and shear-thickening fluid (STF)-infiltrated. Due to differences in the three conditions of the fabric, the computational framework had to utilize three different finite-element formulations: standard Lagrangian formulation for the neat fabric; combined Eulerian-Lagrangian formulation for the PEG-infiltrated fabric (an Eulerian subdomain had to be used to treat the PEG solvent/dispersant); and combined continuum Lagrangian/discrete-particle formulation for the STF-infiltrated fabric (to account for the interactions of the particles suspended in PEG, which give rise to the STF character of the suspension, with the yarns, the particles had to be treated explicitly).

Findings

The results obtained for the single-yarn pull-out virtual tests are compared with the authors’ experimental counterparts, and a reasonably good agreement is obtained, for all three conditions of the fabric.

Originality/value

To the authors’ knowledge, the present work represents the first attempt to simulate single-yarn pull-out tests of Kevlar® KM2 fabric.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 February 2014

Kadir Bilisik and Bekir Yildirim

– The aim of this study was to understand the stick-slip properties of single and multiple yarn pull-out in dry and treated polyester satin woven fabric in boundary regions.

Abstract

Purpose

The aim of this study was to understand the stick-slip properties of single and multiple yarn pull-out in dry and treated polyester satin woven fabric in boundary regions.

Design/methodology/approach

Polyester satin pattern woven fabric was used to conduct the pull-out tests in order to examining the kinetic region of the force-displacement curve. Data generated from this research help the authors to obtain stick-slip force and accumulative retraction force.

Findings

It was found that stick-slip force and accumulative retraction force depend on the number of pulled ends in the fabric, fabric sample dimensions and softening treatments. Stick-slip forces of polyester satin fabric in the multiple yarn pull-out test were higher than those of the single yarn pull-out test. Stick-slip force in single and multiple yarn pull-out tests in the dry polyester satin fabric was generally higher than those of the softening treated polyester satin fabric. In addition, the warp directional single and multiple yarn stick-slip and accumulative retraction forces in the dry and softening treated polyester fabrics were generally higher than those in the weft direction in the fabric edges due to fabric density. On the other hand, the amount of stick-slip force was related to the number of interlacement points in the fabric, whereas the amount of accumulative retraction force was related to fabric structural response.

Originality/value

The mechanism of stick-slip and accumulative retraction force of dry-treated polyester satin pattern woven fabrics were explained. This research could be valuable for development of multifunctional fabrics in technical textiles and ballistic.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2017

Salvinija Petrulyte, Deimante Plascinskiene and Donatas Petrulis

The purpose of this paper is to predict the pull-out force of loop pile of ramie/cotton terry woven fabrics treated with aroma-microcapsules as well as to understand and to…

Abstract

Purpose

The purpose of this paper is to predict the pull-out force of loop pile of ramie/cotton terry woven fabrics treated with aroma-microcapsules as well as to understand and to interpret the pull-out behaviour developing the mathematical model.

Design/methodology/approach

The displacements and forces associated with pulling a yarn from different structures of fabrics were determined. Regression analysis and factorial designs were performed.

Findings

The yarn pull-out behaviour of terry fabric is highly dependent on the applied treating and demonstrated various extents of variability under the different pulling distances. The character of yarn pull-out is periodic and depends on fabric construction. The difference between the resistance to pile loop extraction for the grey and modified terry fabrics depends on the changed fabric’s structure. The existence of good relation between binder’s concentration and resistance to pile loop extraction of terry fabric was proved.

Practical implications

The study enables to forecast important loop feature for terry aroma-textiles: to be securely held in the place preventing loop pulling.

Originality/value

The assessment of the influence of fabric’s weft density and binder’s concentration for the yarn pull-out of terry aroma-textile was proposed. The research developed analysis and empiric mathematical equations suitable for predicting of displacements and forces related to pulling phenomenon as well as designing new multifunctional terry fabrics with resistance to pile loop extraction required. The received knowledge could enlarge the base of information needful for design of new products for clothing, home textile and healthcare/well-being applications as well.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 July 2014

Salvinija Petrulyte, Asta Velickiene and Donatas Petrulis

– The purpose of this paper is to investigate the resistance to pile loop extraction of terry fabrics regarding the pile height and impact/finishing.

Abstract

Purpose

The purpose of this paper is to investigate the resistance to pile loop extraction of terry fabrics regarding the pile height and impact/finishing.

Design/methodology/approach

Fabrics are manufactured by changing the pile height and applying impact/finishing procedures. The resistance to pile loop extraction are determined. The factorial designs are made. For informative experiment the linear type of regression are analysed. Yarn pull-out behaviour in terry fabrics is discussed.

Findings

The dynamics of yarn pull-out process in terry fabrics is estimated through the force-pulling distance curves presented. The resistance to pile loop extraction is determined. All statistical analysis is performed. Appropriate conclusions about the influence of fabrics structure and impact/finishing on yarn pull-out process are made.

Originality/value

The study developed analysis and empiric mathematical equations suitable for evaluating and designing fabrics with the resistance to pile loop extraction ability required. Assessment of the influence of fabric's pile height and impact/finishing on the yarn pull-out is proposed.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2020

Priyanka Gupta, Manas Datta Roy and Subrata Ghosh

This paper aims to assess the relationships amongst the tearing strength of fabrics after each chemical processing stage and after finishing of plain-woven cotton fabric. An…

Abstract

Purpose

This paper aims to assess the relationships amongst the tearing strength of fabrics after each chemical processing stage and after finishing of plain-woven cotton fabric. An effort has been made to study the effect of different finishing chemicals (tear improver) and their different concentrations on the high-density fabric tear strength and its sub-component with respect to the co-efficient of friction value of yarns for all the fabric samples. It also aims to establish a statistical model for prediction of tear strength with identified parameters as yarn–yarn friction co-efficient, yarn pullout force and single yarn strength.

Design/methodology/approach

In case of woven fabrics, it cannot be assumed that only yarn friction plays the role in deciding fabric-tearing strength. Whether the static or kinetic frictions need to be considered or the linear or capstan frictions have to be analyzed, to incorporate the results of friction analysis in the tearing behavior, need to be assessed. In the present work through a fabrication of yarn–yarn friction measurement, under a synchronized slow speed as that of actual fabric tearing (50 mm/min), has been carried out. After each wet processing stage, surface characteristics of yarns have been changed. Surface of yarns becomes smoother after finishing and rough after dyeing, which affects the co-efficient of friction of yarns, accordingly.

Findings

After each wet processing stage, the surface characteristics of yarns are changed. Surface structure of yarns becomes smooth after finishing and rough after dyeing, which affects the co-efficient of friction of yarns. For all the fabrics, the weft-way tearing strength is always higher than warp-way tearing strength. It is also observed that yarn pullout force is not the only responsible factor for tearing strength of such fabric. It is because of the combined action of yarn–yarn friction, yarn pullout force and single yarn strength for a given structure.

Research limitations/implications

A more extensive investigation with respect to concentration as well as further variety of chemicals requires to be identified for the optimum concentration level for each chemical. A mathematical model based on the three parameters as yarn–yarn co-efficient of friction, yarn pullout force and yarn strength for all woven fabric structure to achieve optimum strength level has been established which could be further extended for each fabric structures.

Practical implications

The problem has been identified from the day-to-day exercise of the commercial textile industry. The whole of the sample preparations have been done in the industry by using commercial machines under standard industrial conditions. The findings have been discussed and suitably introduced in the industry.

Originality/value

The whole of this paper has been unique in idea origination, sample preparation and execution of tests. The findings are very important for the researchers as well as for textile industry.

Details

Research Journal of Textile and Apparel, vol. 24 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 5 of 5