Search results

1 – 10 of over 14000
Article
Publication date: 2 January 2018

Hidenobu Matsuki, Taishi Nishiyama, Yuya Omori, Shinji Suzuki, Kazuya Masui and Masayuki Sato

This paper aims to demonstrate the effectiveness of a fault-tolerant flight control method by using simple adaptive control (SAC) with PID controller.

Abstract

Purpose

This paper aims to demonstrate the effectiveness of a fault-tolerant flight control method by using simple adaptive control (SAC) with PID controller.

Design/methodology/approach

Numerical simulations and flight tests are executed for pitch angle and roll angle control of research aircraft MuPAL-α under the following fault cases: sudden reduction in aileron effectiveness, sudden reduction in elevator effectiveness and loss of longitudinal static stability.

Findings

The simulations and flight tests reveal the effectiveness of the proposed SAC with PID controller as a fault-tolerant flight controller.

Practical implications

This research includes implications for the development of vehicles’ robustness.

Originality/value

This study proposes novel SAC-based flight controller and actually demonstrates the effectiveness by flight test.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2008

Jorge L. Estrada, Manuel A. Duarte‐Mermoud, Juan C. Travieso‐Torres and Nicolás H. Beltrán

To develop a simplified robust control scheme for a class of nonlinear time‐varying uncertain chaotic systems.

Abstract

Purpose

To develop a simplified robust control scheme for a class of nonlinear time‐varying uncertain chaotic systems.

Design/methodology/approach

By means of input‐to‐state stability theory, a new robust adaptive control scheme is designed, which is simpler than the one proposed by Li et al. and applicable to a larger class of nonlinear systems. Only one parameter is adjusted in the controller and the scheme assures that all the signals remain bounded. The behavior of the proposed control scheme is also analyzed through simulations on the Rössler system.

Findings

By adjusting only one parameter in the controller and imposing only one mild assumption on the time‐varying parameters, the proposed control algorithm assures that all the signal remain bounded and that the state of the original system will follow a desired trajectory defined either by the trajectory and its first time derivative, or given by a reference model.

Research limitations/implications

The results are limited to a particular class of nonlinear systems where the dimension of the input vector is equal to the order of the system (dimension of the state vector).

Practical implications

The main advantage of the proposed method is that the modification introduced leads to a substantially simpler adaptive robust controller whose practical implementation will be easier.

Originality/value

The contribution of the proposed method is in the simplification of the control algorithm applied to a class of nonlinear time‐varying uncertain chaotic systems. This will be useful for control engineers to control complex industrial plants.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Jožef Ritonja

The purpose of this paper is to develop a controller for damping of oscillations of a synchronous generator connected to the electric network. The goal is to determine the…

Abstract

Purpose

The purpose of this paper is to develop a controller for damping of oscillations of a synchronous generator connected to the electric network. The goal is to determine the configuration of the controller and to set up the procedure for determination of the controller parameters.

Design/methodology/approach

On the basis of the analytical and numerical analysis of the so‐far proposed stabilizers, the new directions towards improved and efficient stabilizer have been established. The advantage of the proposed approach has been confirmed with simulations and experimental results.

Findings

Three main contributions can be highlighted: on the basis of the synchronous generator analysis, it is shown that the conventional power system stabilizer is inappropriate for optimal oscillation damping through the entire operating range; the possibility of application of the model reference adaptive control theory for stabilizer design is confirmed; and the rules have been set up for selection of the stabilizer parameters.

Research limitations/implications

The power system control is rather conservative and does not allow new approaches to the control concepts.

Originality/value

The paper's originality lies in the fact that the proposed adaptive approach for realizing the control system for damping of oscillations is presented completely. The configuration of the controller is presented, as well as the method for determining the adaptation mechanism parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 June 2020

José Francisco Villarreal Valderrama, Luis Takano, Eduardo Liceaga-Castro, Diana Hernandez-Alcantara, Patricia Del Carmen Zambrano-Robledo and Luis Amezquita-Brooks

Aircraft pitch control is fundamental for the performance of micro aerial vehicles (MAVs). The purpose of this paper is to establish a simple experimental procedure to calibrate…

Abstract

Purpose

Aircraft pitch control is fundamental for the performance of micro aerial vehicles (MAVs). The purpose of this paper is to establish a simple experimental procedure to calibrate pitch instrumentation and classical control algorithms. This includes developing an efficient pitch angle observer with optimal estimation and evaluating controllers under uncertainty and external disturbances.

Design/methodology/approach

A wind tunnel test bench is designed to simulate fixed-wing aircraft dynamics. Key elements of the instrumentation commonly found in MAVs are characterized in a gyroscopic test bench. A data fusion algorithm is calibrated to match the gyroscopic test bench measurements and is then integrated into the autopilot platform. The elevator-angle to pitch-angle dynamic model is obtained experimentally. Two different control algorithms, based on model-free and model-based approaches, are designed. These controllers are analyzed in terms of parametric uncertainties due to wind speed variations and external perturbation because of sudden weight distribution changes. A series of experimental tests is performed in wind-tunnel facilities to highlight the main features of each control approach.

Findings

With regard to the instrumentation algorithms, a simple experimental methodology for the design of optimal pitch angle observer is presented and validated experimentally. In the context of the platform design and identification, the similitude among the theoretical and experimental responses shows that the platform is suitable for typical pitch control assessment. The wind tunnel experiments show that a fixed linear controller, designed using classical frequency domain concepts, is able to provide adequate responses in scenarios that approximate the operation of MAVs.

Research limitations/implications

The aircraft orientation observer can be used for both pitch and roll angles. However, for simultaneousyaw angle estimation the proposed design method requires further research. The model analysis considers a wind speed range of 6-18 m/s, with a nominal operation of 12 m/s. The maximum experimentally tested reference for the pitch angle controller was 20°. Further operating conditions may require more complex control approaches (e.g. scheduling, non-linear, etc.). However, this operating range is enough for typical MAV missions.

Originality/value

The study shows the design of an effective pitch angle observer, based on a simple experimental approach, which achieved locally optimum estimates at the test conditions. Additionally, the instrumentation and design of a test bench for typical pitch control assessment in wind tunnel facilities is presented. Finally, the study presents the development of a simple controller that provides adequate responses in scenarios that approximate the operation of MAVs, including perturbations that resemble package delivery and parametric uncertainty due to wind speed variations.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Rooh ul Amin and Aijun Li

The purpose of this paper is to present μ-synthesis-based robust attitude trajectory tracking control of three degree-of-freedom four rotor hover vehicle.

Abstract

Purpose

The purpose of this paper is to present μ-synthesis-based robust attitude trajectory tracking control of three degree-of-freedom four rotor hover vehicle.

Design/methodology/approach

Comprehensive modelling of hover vehicle is presented, followed by development of uncertainty model. A μ-synthesis-based controller is designed using the DK iteration method that not only handles structured and unstructured uncertainties effectively but also guarantees robust performance. The performance of the proposed controller is evaluated through simulations, and the controller is also implemented on experimental platform. Simulation and experimental results validate that μ-synthesis-based robust controller is found effective in: solving robust attitude trajectory tracking problem of multirotor vehicle systems, handling parameter variations and dealing with external disturbances.

Findings

Performance analysis of the proposed controller guarantees robust stability and also ensures robust trajectory tracking performance for nominal system and for 15-20 per cent variations in the system parameters. In addition, the results also ensure robust handling of wind gusts disturbances.

Originality/value

This research addresses the robust performance of hover vehicle’s attitude control subjected to uncertainties and external disturbances using μ-synthesis-based controller. This is the only method so far that guarantees robust stability and performance simultaneously.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 January 2010

Alon Kuperman, Yoram Horen, Saad Tapuchi, Inna Katz and Alexander Abramovitz

The purpose of this paper is to present a method to compensate slow varying disturbances and plant parameter drifts using a simple yet robust algorithm called input‐output…

Abstract

Purpose

The purpose of this paper is to present a method to compensate slow varying disturbances and plant parameter drifts using a simple yet robust algorithm called input‐output nominalization.

Design/methodology/approach

In case of known uncertainties, an analytical expression of pre‐computed feed‐forward compensation command is derived. In presence of unknown disturbances and parameter drifts, the control algorithm uses a proportional‐integrative estimator‐based nominalizer. It creates a nominalizing signal, reflecting the deviation of the system from its nominal form using plant input and output. The signal is subtracted from the nominal controller output to cancel the uncertainty and disturbances effects.

Findings

As a result, the uncertain plant and the nominalizer quickly converge to the nominal plant. Therefore, a simple controller tuned according to the nominal plant can be used despite the disturbances and parameter drifts and a nominal response is always obtained. Simulation and experimental results are given to describe the control algorithm performance and inherent limitations.

Research limitations/implications

The proposed method is suitable for linear systems with low frequency uncertainties and disturbances only.

Practical implications

The technique allows compensating errors in plant parameter identifications as well as parameter drifts during plant operations. Constant and slow varying disturbances are also rejected, allowing obtaining a prescribed nominal response.

Originality/value

The proposed approach is different from the common robust control methods to the uncertain linear systems control. Instead of designing a robust controller, efforts are concentrated on the plant input‐output nominalization in a fashion similar to input‐output linearization. The method allows compensating slow varying disturbances and plant parameter drifts using a simple algorithm leading to a simple controller tuned according to the nominal plant parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 1 June 1999

57

Abstract

Details

Industrial Robot: An International Journal, vol. 26 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 June 2017

Moharam Habibnejad Korayem, Reza Shiri, Saeed Rafee Nekoo and Zohair Fazilati

The purpose of this paper is to propose an indirect design for sliding surface as a function of position and velocity of each joint (for mounted manipulator on base) and center of…

Abstract

Purpose

The purpose of this paper is to propose an indirect design for sliding surface as a function of position and velocity of each joint (for mounted manipulator on base) and center of mass of mobile base which includes rotation of wheels. The aim is to control the mobile base and its mounted arms using a unified sliding surface.

Design/methodology/approach

A new implementation of sliding mode control has been proposed for wheeled mobile manipulators, regulation and tracking cases. In the conventional sliding mode design, the position and velocity of each coordinate are often considered as the states in the sliding surface, and consequently, the input control is found based on them. A mobile robot consisted of non-holonomic constraints, makes the definition of the sliding surface more complex and it cannot simply include the coordinates of the system.

Findings

Formulism of both sliding mode control and non-singular terminal sliding mode control were presented and implemented on Scout robot. The simulations were validated with experimental studies, which led to satisfactory analysis. The non-singular terminal sliding mode control actually had a better performance, as it was illustrated that at time 10 s, the error for that was only 8.4 mm, where the error for conventional sliding mode control was 11.2 mm.

Originality/value

This work proposes sliding mode and non-singular terminal sliding mode control structure for wheeled mobile robot with a sliding surface including state variables: center of mass of base, wheels’ rotation and arm coordinates.

Details

Industrial Robot: An International Journal, vol. 44 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 November 2013

John Counsell, Obadah Zaher, Joseph Brindley and Gavin Murphy

The purpose of this research is to design a robust high-performance nonlinear multi-input multi-output heating, ventilation and air conditioning (HVAC) system controller for…

Abstract

Purpose

The purpose of this research is to design a robust high-performance nonlinear multi-input multi-output heating, ventilation and air conditioning (HVAC) system controller for temperature and relative humidity regulation. Buildings are complex systems which are subjected to many unknown disturbances. Further complicating the control problem is the fact that, in practice, buildings and their systems have static nonlinearities such as power saturation that make stability difficult to guarantee. Therefore, in order to overcome these issues, a control system must be designed to be robust (performance insensitive) against uncertainties, static nonlinearities and effectively respond to unknown heat load and moisture disturbances.

Design/methodology/approach

A state of the art nonlinear inverse dynamics (NID) technique is combined with a genetic algorithm (GA) optimisation scheme in order to improve robustness against uncertainty in the system's modelling assumptions. The parameter uncertainty problem is addressed by optimising the control system parameters over a specified range of uncertainty. The NID control structure provides further robustness with effective disturbance handling and a stability criteria that holds in the presence of actuator saturation.

Findings

The proposed method delivers significantly more energy efficient performance whilst achieving improved thermal comfort when compared with a current industry standard HVAC controller design such as proportional-integral-derivative. The expected excellent response to disturbances is also demonstrated.

Research limitations/implications

This method can easily be extended to account for other parameters with a specified uncertainty range.

Practical implications

This research presents a method of optimised NID controller design which can be easily implemented in real HVAC controllers of building energy management systems with a high degree of confidence to provide high levels of thermal comfort whilst significantly reducing energy usage.

Originality/value

A novel HVAC optimised NID control strategy using the robust inverse dynamics estimation feedback control topology with GA optimisation for improved robustness and tuning over a range of parameter uncertainty is described, designed and its performance benefits shown through simulation studies.

Details

Engineering Computations, vol. 30 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 March 2022

Ray C. Chang, Yangnan Lv, Jing Shi and Ningying Chen

The purpose of this paper is to present the irregular deviation examination of flight control surfaces and the potential problem diagnosis of irregular deviations for the jet…

Abstract

Purpose

The purpose of this paper is to present the irregular deviation examination of flight control surfaces and the potential problem diagnosis of irregular deviations for the jet transport aircraft. A four-jet transport aircraft at transonic flight in cruise phase is the study case of the present article.

Design/methodology/approach

The standard lift-to-drag ratio (L/D) and flight dynamic models are established through flight data mining and the fuzzy logic modeling technique based on the flight data of quick access recorder available in the Flight Operations Quality Assurance (FOQA) program of the airlines. The irregular deviations of flight control surfaces are examined by the standard L/D model-predicted results through sensitivity analysis. The contribution values in L/D deficiency are predicted by the deviations and the L/D derivatives of all influencing variables in Taylor series expansion. The potential problems due to irregular deviations can be excavated by the flight dynamic models through the analysis of in-flight stability and controllability.

Findings

The magnitude of stabilizer angle to the deficiency of L/D is the largest among the four control surfaces and elevator is the second one through the judgment of contribution values in L/D deficiency. The stabilizer has irregular deviations with obvious endplay problems of jackscrew, as found in the present study. The stabilizer is suggested to have the unscheduled maintenance for the flight control rigging.

Research limitations/implications

The specific transport aircraft of the standard L/D model should be the best one in L/D performance among all transport aircraft in the fleet of the airlines. The present method is a new concept to monitor the irregular deviation of flight control surface. The study case of the four-jet transport aircraft at transonic flight in cruise phase is illustrated as the standard L/D mode. The required flight data of monitored flight is requested to eliminate the biases through compatibility checks. The flight data of study case in the present study is also illustrated as monitored flight data.

Practical implications

To diagnose the irregular deviations of flight control surface deflected angles with contributing to the L/D deficiency estimation is an innovation to improve the flight data analysis of FOQA program for airlines. If the irregular deviation problems of control surfaces can be fixed after rigging in maintenance, the goal of flight safety and aviation fuel saving will be achieved.

Social implications

The flight control surface rigging of unscheduled maintenance is not expected to coincide with an airline’s peak season or unavailable space in hangar. The optimal time of unscheduled maintenance for the flight control rigging will be easily decided through the correlations between excessive fuel cost and flight safety.

Originality/value

This method can be used to assist airlines to monitor irregular angular positions of flight control surfaces as a complementary tool for management to improve aviation safety, operation and operational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 14000