Search results

1 – 10 of 65
Case study
Publication date: 25 April 2024

Ashutosh Dash and Rahul Pramani

The primary objectives of the case study are to get the participants exposed to the issues of working capital which even profitable companies face on a day-to-day basis; give the…

Abstract

Learning outcomes

The primary objectives of the case study are to get the participants exposed to the issues of working capital which even profitable companies face on a day-to-day basis; give the participants an understanding of how to balance the, at times, conflicting objectives of increasing profits and sales through favorable credit terms; and expose them to the impact of increase in inventory levels and average collection period on margins in a period of slow growth. They will also learn about the concept of factoring and its uses.

Case overview/synopsis

The case study is about a group of companies engaged in education, steel fabrication and oil businesses owned by a single proprietor. The company was based in Fatehnagar which was part of Hyderabad district in the state of Telangana, India, and the case study traces the origins of the group from 1960s to 2021. The group was invested the surplus cash flows from the oil business to initiate and expand other businesses during this period. The economic downturn due to the COVID-19 pandemic had hit the company, particularly its oldest business – Noble Chemical Agency. The oil business was facing issues related to its growth and profitability, and the uncertainty around COVID-19-related restrictions had only augmented the fears of the management. The case study looks at issues and the dilemma which the owner of the company faced. The case study highlights various issues related to working capital management, especially related to receivables management and inventory levels faced by businesses during the slow-growth phase. It demonstrates how working capital management issues, if not resolved in time, can lead to insolvency of even a successful company with a sound business model.

Complexity academic level

The case study is meant for teaching in postgraduate management programs (Master of Business Administration and Postgraduate Diploma in Management) in the following courses: corporate finance/financial management course in the first year (the case study should be taught towards the end of the course); and management accounting courses in first year (the case study should be positioned in the middle of these courses). The case study can also be used to highlight issues related to working capital and small business management in a Management Development Programme (MDP) course for “Finance fundamentals for non-finance executives”.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 1: Accounting and finance.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 2
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 March 2023

Аleksandr Viktorovich Zaichuk, Аleksandra Andreevna Amelina and Yurii Sergeevich Hordieiev

The purpose of this study was to the low-temperature synthesis of cobalt-containing diopside pigments based on granulated blast furnace slag and to study the characteristics of…

Abstract

Purpose

The purpose of this study was to the low-temperature synthesis of cobalt-containing diopside pigments based on granulated blast furnace slag and to study the characteristics of the mineral formation processes, changes in the structure and colour indices.

Design/methodology/approach

Synthesis of cobalt-containing diopside pigments based was carried out by the directional formation of the mineralogical composition with the introduction of part of the components using granulated blast-furnace slag.

Findings

It has been established that the formation of the diopside phase in pigments containing blast-furnace slag as the main component proceeds at low temperatures (1,100°C–1,150 °C). The colour of diopside pigments is formed because of the isomorphic substitution of Si4+ ions for Al3+ ions and Mg2+ ions for Co2+ ions. It is expedient to add CoO in an amount of 0.9 mol (18 Wt.%) into the composition of diopside pigments based on blast-furnace slag to obtain defect-free violet glazes.

Practical implications

The developed diopside pigments enable obtaining of high-quality violet glazes for ceramics. The application of the obtained results can significantly reduce the consumption of traditional raw materials in the composition of silicate ceramic pigments, as well as reduce their firing temperature.

Originality/value

Calcium, magnesium and silicon oxides are the main components of blast-furnace slag. In addition, granulated blast furnace slag is mainly represented by the glassy phase, which determines its high activity during the firing process. These factors are prerequisites for using the blast-furnace slag as a valuable substitute for chemically pure or natural raw materials in silicate pigments and reducing their firing temperature.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 August 2024

Ali Hassanzadeh, Ebrahim Ghorbani Kalhor, Khalil Farhadi and Jafar Abolhasani

This study aims to investigate the efficacy of Ag@GO/Na2SiO3 nanocomposite in eliminating As from aqueous solutions. Employing response surface methodology, the research…

Abstract

Purpose

This study aims to investigate the efficacy of Ag@GO/Na2SiO3 nanocomposite in eliminating As from aqueous solutions. Employing response surface methodology, the research systematically examines the adsorption process.

Design/methodology/approach

Various experimental parameters including sample pH, contact time, As concentration and adsorbent dosage are optimized to enhance the As removal process.

Findings

Under optimized conditions, the initial As concentration, contact time, pH and adsorbent dosage are determined to be 32 ppm, 50 mins, 6.5 and 0.4 grams, respectively. While the projected removal of As stands at 97.6% under these conditions, practical application achieves a 93% removal rate. Pareto analysis identifies the order of significance among factors as follows: adsorbent dosage > contact time > pH > As concentration.

Practical implications

This study highlights the potential Ag@GO/Na2SiO3 as a promising adsorbent for efficiently removing industrial As from aqueous solutions, and it is likely to have a good sufficiency in the filtration of water and wastewater treatment plans to remove some chemical pollution, including paints and heavy metals.

Originality/value

The simplicity of the nanocomposite preparation method without the need for advanced equipment and the cheapness of the raw materials and its potential ability to remove As are the prominent advantages of this research.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 May 2024

Xiaohu Wen, Xiangkang Cao, Xiao-ze Ma, Zefan Zhang and Zehua Dong

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Abstract

Purpose

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Design/methodology/approach

A kind of micro-nano hydrophobic ternary microparticles was fabricated from SiO2/halloysite nanotubes (HNTs) and recycled concrete powders (RCPs), which was then mixed with sodium silicate and silane to form an inorganic slurry. The slurry was further sprayed on the concrete surface to construct a superhydrophobic coating (SHC). Transmission electron microscopy and energy-dispersive X-ray spectroscopy mappings demonstrate that the nano-sized SiO2 has been grafted on the sub-micron HNTs and then further adhered to the surface of micro-sized RCP, forming a kind of superhydrophobic particles (SiO2/HNTs@RCP) featured of abundant micro-nano hierarchical structures.

Findings

The SHC surface presents excellent superhydrophobicity with the water contact angle >156°. Electrochemical tests indicate that the corrosion rate of mild steel rebar in coated concrete reduces three-order magnitudes relative to the uncoated one in 3.5% NaCl solution. Water uptake and chloride ion (Cl-) diffusion tests show that the SHC exhibits high H2O and Cl- ions barrier properties thanks to the pore-sealing and water-repellence properties of SiO2/HNTs@RCP particles. Furthermore, the SHC possesses considerable mechanical durability and outstanding self-cleaning ability.

Originality/value

SHC inhibits water uptake, Cl- diffusion and rebar corrosion of concrete, which will promote the sustainable application of concrete waste in anti-corrosive concrete projects.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 March 2023

Shan Peng, Ranran Yang, Binglong Lei, Yun Gao, Renhua Chen, Xiaohong Xia and Kevin P. Homewood

This paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust…

Abstract

Purpose

This paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust inorganic pigments, typically like ZrSiO4-based pigments, thereby enhancing their coloring performance.

Design/methodology/approach

The authors designed a route, surplus alkali-decomposition and subsequently strong-acid dissolution (SAD2) to completely decompose three classic zircon pigments (Pr–ZrSiO4, Fe2O3@ZrSiO4 and CdS@ZrSiO4) into clear solutions and preferably used inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the concentrations of host elements and chromophores, thereby deriving the numeric data and interrelation of αRe and αAb.

Findings

Zircon pigments can be thoroughly decomposed into some dissoluble zirconate–silicate resultants by SAD2 at a ratio of the fluxing agent to pigment over 6. ICP-OES is proved more suitable than some other quantification techniques in deriving the compositional concentrations, thereby the values of αRe and αAb, and their transformation coefficient KRA, which maintains stably within 0.8–0.9 in Fe2O3@ZrSiO4 and CdS@ZrSiO4 and is slightly reduced to 0.67–0.85 in Pr–ZrSiO4.

Practical implications

The SAD2 method and encapsulation efficiencies are well applicable for both zircon pigments and the other pigmental or non-pigmental inhomogeneous systems in characterizing their accurate composition.

Originality/value

The authors herein first proposed strict definitions for the relative and absolute encapsulation efficiencies for inorganic pigments, developed a relatively stringent methodology to determine their accurate values and interrelation.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

1 – 10 of 65