Search results

1 – 10 of 11
Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1429

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 22 December 2022

Carolina Bermudo Gamboa, Sergio Martín Béjar, Francisco Javier Trujillo Vilches and Lorenzo Sevilla Hurtado

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of…

Abstract

Purpose

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of printed parts with short carbon fibers reinforced PLA. For this case study, a hollow cylindrical shape is considered, aiming to cover the gap detected in previous works analyzed.

Design/methodology/approach

Nowadays, additive manufacturing plays a very important role in the manufacturing industry, as can be seen through its numerous research and applications that can be found. Within the engineering industry, geometrical tolerances are essential for the functionality of the parts and their assembly, but the variability in three-dimensional (3D) printing makes dimensional control a difficult task. Constant development in 3D printing allows, more and more, printed parts with controlled and narrowed geometrical deviations and tolerances. So, it is essential to continue narrowing the studies to achieve the optimal printed parts, optimizing the manufacturing process as well.

Findings

Results present the relation between the selected printing parameters and the resulting printed part, showing the main deviations and the eligible values to achieve a better tolerance control. Also, from these results obtained, we present a parametric model that relates the geometrical deviations considered in this study with the printing parameters. It can provide an overview of the piece before printing it and so, adjusting the printing parameters and reducing time and number of printings to achieve a good part.

Originality/value

The main contribution is the study of the geometry selected under a 3D printing process, which is important because it considers parts that are created to fit together and need to comply with the required tolerances. Also, we consider that the parametric model can be a suitable approach to selecting the optimal printing parameters before printing.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 June 1998

141

Abstract

Details

Assembly Automation, vol. 18 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Content available
Book part
Publication date: 19 December 2016

Anurudra Bhanot

Abstract

Details

Strategic Marketing Management in Asia
Type: Book
ISBN: 978-1-78635-745-8

Content available
Article
Publication date: 1 September 2006

69

Abstract

Details

Industrial Robot: An International Journal, vol. 33 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 25 January 2011

269

Abstract

Details

Sensor Review, vol. 31 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 1 August 2002

292

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 4 December 2017

Natalie Ishmael, Anura Fernando, Sonja Andrew and Lindsey Waterton Taylor

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of…

6943

Abstract

Purpose

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of combining yarn interlocking with yarn interlooping.

Design/methodology/approach

The paper describes the key textile technologies used for composite manufacture: braiding, weaving and knitting. The various textile preforming methods are suited to different applications; their capabilities and end performance characteristics are analysed.

Findings

Such preforms are used in composites in a wide range of industries, from aerospace to medical and automotive to civil engineering. The paper highlights how the use of knitting technology for preform manufacture has gained wider acceptance due to its flexibility in design and shaping capabilities. The tensile properties of glass fibre knit structures containing inlay yarns interlocked between knitted loops are given, highlighting the importance of reinforcement yarns.

Originality/value

The future trends of reinforcement yarns in knitted structures for improved tensile properties are discussed, with initial experimental data.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 13 January 2022

Andrea Patrucco, Christine Mary Harland, Davide Luzzini and Federico Frattini

Suppliers are essential partners in innovation projects, as they own resources, knowledge assets and capabilities that complement those of buying firms. In today’s competitive…

2806

Abstract

Purpose

Suppliers are essential partners in innovation projects, as they own resources, knowledge assets and capabilities that complement those of buying firms. In today’s competitive environment, firms may choose to collaborate with suppliers beyond dyads, forming triadic or three-party relationships. Using the theoretical lens of the relational view (RV), this study aims to explore what type of triad configurations firms use to govern supplier relationships in collaborative innovation projects, how they choose to share resources and implications for project performance.

Design/methodology/approach

The authors use interview data from buyers and suppliers in six case studies of firms involved in ten collaborative innovation projects. The four constructs of the RV are used to observe how firms govern triadic relationships, combine complementary resources, invest in relationship-specific assets and manage information and knowledge exchange with and between suppliers in innovation projects.

Findings

Four archetypes of triadic relationships in innovation projects – labeled Triangle, A-frame, D-Frame and Line – are presented and characterized in terms of their structural and relational features. The authors discuss how each triad archetype is applicable to different innovation projects according to specific project characteristics.

Originality/value

This study is pioneering in its empirical examination of triadic relationships in collaborative innovation projects. It provides a novel typology of four archetypes of triad from the perspective of collaborative relationships with suppliers. Through applying the RV, it advances understanding of how triadic relationships are governed, how they invest in relationship-specific assets, how they combine complementary resources and how they exchange knowledge and information in each type of triad appropriate to different innovation project settings. To date, much of the extant literature has focused on dyads.

Details

Supply Chain Management: An International Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1359-8546

Keywords

Content available
Article
Publication date: 1 December 2003

B.H. Rudall

732

Abstract

Details

Kybernetes, vol. 32 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Access

Only content I have access to

Year

All dates (11)

Content type

1 – 10 of 11