Search results

1 – 10 of 180
Article
Publication date: 4 September 2023

Shahe Liang, Wenkun Liu and Zhongfan Chen

Recycled concrete is an economical and environmentally friendly green material. The shear performance of recycled concrete load-bearing masonry is studied, which is great of…

Abstract

Purpose

Recycled concrete is an economical and environmentally friendly green material. The shear performance of recycled concrete load-bearing masonry is studied, which is great of significance for its promotion and application and also has great significance for the sustainable development of energy materials.

Design/methodology/approach

In total, 30 new load-bearing block masonry samples of self-insulating recycled concrete are subjected to pure shear tests, and 42 samples are tested subjected to shear-compression composite shear tests. According to the axial design compression ratio, the test is separated into seven working conditions (0.1–0.8).

Findings

According to the test results, the recommended formula for the average shear strength along the joint section of recycled concrete block masonry is given, which can be used as a reference for engineering design. The measured shear-compression correlation curves of recycled concrete block masonry are drawn, and the proposed limits of three shear-compression failure characteristics are given. The recommended formula for the average shear strength of masonry under the theory of shear-friction with variable friction coefficient is given, providing a valuable reference for the formulation of relevant specifications and practical engineering design.

Originality/value

Simulated elastoplastic analysis and finite element modeling on the specimens are performed to verify the test results.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 May 2024

Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…

Abstract

Purpose

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.

Design/methodology/approach

Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.

Findings

For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.

Originality/value

This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 July 2024

Shashikant Mahadev Nagargoje and Milinda Ashok Mahajan

The purpose of this paper is to study the shearing performance under bi-directional loading of an interior beam–column joint (BCJ) sub-assemblage using the finite element analysis…

Abstract

Purpose

The purpose of this paper is to study the shearing performance under bi-directional loading of an interior beam–column joint (BCJ) sub-assemblage using the finite element analysis (FEA) tool (midas fea), validated in this research.

Design/methodology/approach

The BCJ can be defined as an essential part of the column that transfers the forces at the ends of the members connected to it. The members of the rigid jointed plane frame resist external forces by developing twisting moment, bending moment, axial force and shear force in the frame members. On the type of joints, the response to the action of lateral loads depends on reinforced concrete (RC) framed structures. The joint is considered rigid if the angle between the members remains unchanged during the structural deformation. This work examined the shear deformation, load displacement and strength of a non-seismically detailed internal concentric RC joint using non-linear FEA. The bi-directional loading imposes the oblique compression zone on one joint corner. This joint core’s oblique compression strut mechanism differs significantly from that under unidirectional loading. The numerical results are compared with experimental results in this study, with the data published in the literature.

Findings

Numerical analysis results show that, in the comparative study of numerical and experimental values, the FEA tool predicts the behaviour of the RC BCJ well. The discrepancy between the experimental and numerical results amounts to 6 to 12% end displacement of the beam, 7% resultant joint shear force, 4.23% column bar strain and 0.70% hoop strain.

Originality/value

The current code of practice describes the joint sub-assemblage behaviour along the single axis individually. In the non-orthogonal system, the superposition of the two axes for joint space results in overlapping the stresses and, hence, the formation of the oblique strut. This may result in a reduction in the joint capacity under bi-directional loading. The behaviour must be explored in depth, and an attempt is made for further exploration.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 January 2022

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The…

Abstract

Purpose

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The finite-element (FE) simulation of such beams using numerical software is very scarce in the literature and therefore this study is taken to demonstrate the modeling aspects of unbonded partially prestressed concrete (UPPSC) beams. This study aims to present the three-dimensional (3-D) nonlinear FE simulations of UPPSC beams subjected to monotonic static loadings using the numerical analysis package ANSYS.

Design/methodology/approach

The sensitivity study is carried out with three different mesh densities to obtain the optimum elements that reflect on the load–deflection behavior of numerical models, and the model with optimum element density is used further to model all the UPPSC beams in this study. Three half-symmetry FE model is constructed in ANSYS parametric design language domain with proper boundary conditions at the symmetry plane and support to achieve the same response as that of the full-scale experimental beam available in the literature. The linear and nonlinear material behavior of prestressing tendon and conventional steel reinforcements, concrete and anchorage and loading plates are modeled using link180, solid65 and solid185 elements, respectively. The Newton–Raphson iteration method is used to solve the nonlinear solution of the FE models.

Findings

The evolution of concrete cracking at critical loadings, yielding of nonprestressed steel reinforcements, stress increment in the prestressing tendon, stresses in concrete elements and the complete load–deflection behavior of the UPPSC beams are well predicted by the proposed FE model. The maximum discrepancy of ultimate moments and deflections of the validated FE models exhibit 13% and −5%, respectively, in comparison with the experimental results.

Practical implications

The FE analysis of UPPSC beams is done using ANSYS software, which is a versatile tool in contrast to the experimental testing to study the stress increments in the unbonded tendons and assess the complete nonlinear response of partially prestressed concrete beams. The validated numerical model and the techniques presented in this study can be readily used to explore the parametric analysis of UPPSC beams.

Originality/value

The developed model is capable of predicting the strength and nonlinear behavior of UPPSC beams with reasonable accuracy. The load–deflection plot captured by the FE model is corroborated with the experimental data existing in the literature and the FE results exhibit good agreement against the experimentally tested beams, which expresses the practicability of using FE analysis for the nonlinear response of UPPSC beams using ANSYS software.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 September 2023

Chao Zhang, Jianxin Fu and Yu Wang

The interaction between rock mass structural planes and dynamic stress levels is important to determine the stability of rock mass structures in underground geotechnical…

Abstract

Purpose

The interaction between rock mass structural planes and dynamic stress levels is important to determine the stability of rock mass structures in underground geotechnical engineering. In this work, the authors aim to focus on the degradation effects of fracture geometric parameters and unloading stress paths on rock mechanical properties.

Design/methodology/approach

A three-dimensional Particle Flow Code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of granite specimens containing prefabricated cracks under conventional triaxial compression and triaxial unilateral unloading. The authors demonstrated the unique mechanical response of prefabricated fractured rock under two conditions. The crack initiation, propagation, and coalescence process of pre-fissured specimens were analyzed in detail.

Findings

The authors show that the prefabricated cracks and unilateral unloading conditions not only deteriorate the mechanical strength but also have significant differences in failure modes. The degrading effect of cracks on model strength increases linearly with the decrease of the dip angle. Under the condition of true triaxial unilateral unloading, the deterioration effect of peak strength of rock is very significant, and unloading plays a role in promoting the instability failure of rock after peak, making the rock earlier instability failure. Associating with the particle vector diagram and crack coalescence process, the authors find that model failure mode under unilateral loading conditions is obviously distinct from that in triaxial loading. The peak strain in the unloading direction increases sharply, resulting in a new shear slip.

Originality/value

This study is expected to improve the understanding of the strength failure and cracking behavior of fractured rock under unilateral unloading.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 21 June 2024

Francesco Bandinelli, Martina Scapin and Lorenzo Peroni

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting…

406

Abstract

Purpose

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting for anisotropy and raster angles, can help develop efficient material models. This study aims to use compression tests to characterize short carbon-reinforced PA12 made by fused filament fabrication (FFF) and to model its behaviour by the FE method.

Design/methodology/approach

In this work, the authors focus on compression tests, using post-processed specimens to overcome external defects introduced by the FFF process. The material’s elastoplastic mechanical behaviour is modelled by an elastic stiffness matrix, Hill’s anisotropic yield criterion and Voce’s isotropic hardening law, considering the stacking sequence of raster angles. A FE analysis is conducted to reproduce the material’s compressive behaviour through the LS-DYNA software.

Findings

The proposed model can capture stress values at different deformation levels and peculiar aspects of deformed shapes until the onset of damage mechanisms. Deformation and damage mechanisms are strictly correlated to orientation and raster angle.

Originality/value

The paper aims to contribute to the understanding of 3D-printed material’s behaviour through compression tests on bulk 3D-printed material. The methodology proposed, enriched with an anisotropic damage criterion, could be effectively used for design and verification purposes in the field of 3D-printed components through FE analysis.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 May 2024

Job Maveke Wambua, Fredrick Madaraka Mwema, Stephen Akinlabi, Martin Birkett, Ben Xu, Wai Lok Woo, Mike Taverne, Ying-Lung Daniel Ho and Esther Akinlabi

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also…

Abstract

Purpose

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.

Design/methodology/approach

A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.

Findings

The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.

Practical implications

The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.

Originality/value

To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 May 2024

Fay Rhianna Claybrook, Darren John Southee and Mazher Mohammed

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a…

Abstract

Purpose

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a product context is limited by the appropriateness of available materials, with polyurethane foams being the current gold standard material. The purpose of this study is to investigate additively manufactured flexible printing of scaffold structures as an alternative.

Design/methodology/approach

In this study, this study investigates triply periodic minimal surface (TPMS) structures, including Gyroid, Diamond and Schwarz P formed in thermoplastic polyurethane (TPU), as a possible alternative. Each TPMS structure was fabricated using material extrusion additive manufacturing and evaluated to ASTM mechanical testing standard for polymers. This study focuses attention to TPMS structures fabricated for a fixed unit cell size of 10 mm and examine the compressive properties for changes in the scaffold porosity for samples fabricated in TPU with a shore hardness of 63A and 90A.

Findings

It was discovered that for increased porosity there was a measured reduction in the load required to deform the scaffold. Additionally, a complex relationship between the shore hardness and the stiffness of a structure. It was highlighted that through the adjustment of porosity, the compressive strength required to deform the scaffolds to a point of densification could be controlled and predicted with high repeatability.

Originality/value

The results indicate the ability to tailor the scaffold design parameters using both 63A and 90A TPU material, to mimic the loading properties of common polyurethane foams. The use of these structures indicates a next generation of tailored cushioning using additive manufacturing techniques by tailoring both geometry and porosity to loading and compressive strengths.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 September 2022

Amal A. Farahat, Ahmed A. Elansary and Hany A. Abdalla

Punching can trigger catastrophic failures in flat slabs because of its sudden nature resulting from exceeding the shear capacity of slabs. Effect of using recycled aggregate, as…

Abstract

Purpose

Punching can trigger catastrophic failures in flat slabs because of its sudden nature resulting from exceeding the shear capacity of slabs. Effect of using recycled aggregate, as an environmental-friendly alternative to traditional RC structures, on punching behavior of these slabs was not sufficiently investigated in the literature. Hence, this paper aims to experimentally study the effect of using recycled coarse aggregate (RCA) on the punching shear capacity (PSC) of RC flat slabs. The RCA is produced by crushing of waste of concrete standard cubes obtained from compression tests.

Design/methodology/approach

A total of 12 slab-column connection specimens with different slab thicknesses (140, 160 and 200 mm) and different RCA percentages (0%, 30% and 70%) were prepared and tested under a central point load, to test its effect on the behavior of flat slabs. The punching failure loads of the tested specimens were compared with those obtained according to the provisions of different international building codes.

Findings

Compared with natural aggregate concrete, mixes with 30% and 70% RCA experienced reductions in the compressive that did not exceed 4% and 21%, while reductions of 4% and 13% were observed for the tensile strength, respectively. The increase in the amount of RCA reduced the PSC by 0%–7%, 0%–4% and 4%–10% for slabs with a thickness of 140, 160 and 200 mm, respectively. For slabs with punching shear reinforcement (PSR), ACI 318 provided the closest estimation for the PSC by 9%, whereas EURO 2 overestimated the PSC by 25% and ECP 203 underestimated the PSC by 41%.

Research limitations/implications

The provided conclusions are obtained from the conducted experimental work where a constant W/C ratio, aggregate type and a maximum aggregate size of 19 mm for the RCA were adopted.

Originality/value

Enhancement in the behavior of flat slabs with various thicknesses and amounts of RCA because of introducing PSR is experimentally evaluated. The failure loads of the tested slabs with recycled and normal coarse aggregates were compared against different code provisions.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 180