Search results

1 – 10 of 39
Article
Publication date: 13 February 2020

Liping Ying, Yijiang Peng and Mahmoud M.A. Kamel

Based on the random aggregate model of recycled aggregate concrete (RAC), this paper aims to focus on the effect of loading rate on the failure pattern and the macroscopic…

Abstract

Purpose

Based on the random aggregate model of recycled aggregate concrete (RAC), this paper aims to focus on the effect of loading rate on the failure pattern and the macroscopic mechanical properties.

Design/methodology/approach

RAC is regarded as a five-phase inhomogeneous composite material at the mesoscopic level. The number and position of the aggregates are modeled by the Walraven formula and Monte–Carlo stochastic method, respectively. The RAC specimen is divided by the finite-element mesh to establish the dynamic base force element model. In this model, the element mechanical parameters of each material phase satisfy Weibull distribution. To simulate and analyze the dynamic mechanical behavior of RAC under axial tension, flexural tension and shear tension, the dynamic tensile modes of the double-notched specimens, the simply supported beam and the L specimens are modeled, respectively. In addition, the different concrete samples are numerically investigated under different loading rates.

Findings

The failure strength and failure pattern of RAC have strong rate-dependent characteristics because of the inhomogeneity and the inertial effect of the material.

Originality/value

The dynamic base force element method has been successfully applied to the study of recycled concrete.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2022

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The…

Abstract

Purpose

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The finite-element (FE) simulation of such beams using numerical software is very scarce in the literature and therefore this study is taken to demonstrate the modeling aspects of unbonded partially prestressed concrete (UPPSC) beams. This study aims to present the three-dimensional (3-D) nonlinear FE simulations of UPPSC beams subjected to monotonic static loadings using the numerical analysis package ANSYS.

Design/methodology/approach

The sensitivity study is carried out with three different mesh densities to obtain the optimum elements that reflect on the load–deflection behavior of numerical models, and the model with optimum element density is used further to model all the UPPSC beams in this study. Three half-symmetry FE model is constructed in ANSYS parametric design language domain with proper boundary conditions at the symmetry plane and support to achieve the same response as that of the full-scale experimental beam available in the literature. The linear and nonlinear material behavior of prestressing tendon and conventional steel reinforcements, concrete and anchorage and loading plates are modeled using link180, solid65 and solid185 elements, respectively. The Newton–Raphson iteration method is used to solve the nonlinear solution of the FE models.

Findings

The evolution of concrete cracking at critical loadings, yielding of nonprestressed steel reinforcements, stress increment in the prestressing tendon, stresses in concrete elements and the complete load–deflection behavior of the UPPSC beams are well predicted by the proposed FE model. The maximum discrepancy of ultimate moments and deflections of the validated FE models exhibit 13% and −5%, respectively, in comparison with the experimental results.

Practical implications

The FE analysis of UPPSC beams is done using ANSYS software, which is a versatile tool in contrast to the experimental testing to study the stress increments in the unbonded tendons and assess the complete nonlinear response of partially prestressed concrete beams. The validated numerical model and the techniques presented in this study can be readily used to explore the parametric analysis of UPPSC beams.

Originality/value

The developed model is capable of predicting the strength and nonlinear behavior of UPPSC beams with reasonable accuracy. The load–deflection plot captured by the FE model is corroborated with the experimental data existing in the literature and the FE results exhibit good agreement against the experimentally tested beams, which expresses the practicability of using FE analysis for the nonlinear response of UPPSC beams using ANSYS software.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 October 2020

Yijiang Peng, Zhenghao Wu, Liping Ying and Desi Yang

This paper aims to propose the five-phase sphere equivalent model of recycled concrete, which can be used to deduce the theoretical formulas for the Poisson’s ratio and effective…

Abstract

Purpose

This paper aims to propose the five-phase sphere equivalent model of recycled concrete, which can be used to deduce the theoretical formulas for the Poisson’s ratio and effective elastic modulus.

Design/methodology/approach

At a mesoscopic level, the equivalent model converts the interfacial layer, which consists of the new interfacial transition zone (ITZ), the old mortar and the old (ITZ), into a uniform equivalent medium. This paper deduces a strength expression for the interfacial transition zone at the microscopic level using the equivalent model and elastic theory. In addition, a new finite element method called the base force element method was used in this research.

Findings

Through numerical simulation, it was found that the mechanical property results from the five-phase sphere equivalent model were in good agreement with those of the random aggregate model. Furthermore, the proposed model agree on quite well with the available experimental data.

Originality/value

The equivalent model can eliminate the influence of the interfacial layer on the macroscopic mechanical properties, thereby improving the calculation accuracy and computational efficiency. The proposed model can also provide a suitable model for multi-scale calculations.

Article
Publication date: 30 October 2019

Ya-hui Wang, Cai Zhang, Yong-qiang Su, Li-yang Shang and Tao Zhang

As a key part of the algae removal equipment in the middle route of South-to-North Water Diversion Project, the static analysis and dynamic analysis are carried out for the…

Abstract

Purpose

As a key part of the algae removal equipment in the middle route of South-to-North Water Diversion Project, the static analysis and dynamic analysis are carried out for the structural characteristics of the frame. The paper aims to discuss this issue.

Design/methodology/approach

First, the model is constructed for analysis. Second, finite element analysis are carried out. And finally, test designed is used for the construction.

Findings

The optimization scheme that minimizes the quality under the condition of satisfying the allowable stress is found, and the quality is reduced by 6.88 percent.

Originality/value

The paper is based on the occurrence of seasonal algae in the main channel of the Middle Route of the South-to-North Water Diversion Project, an automatic algae-removing equipment was designed.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess…

Abstract

Purpose

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess the load-carrying capacity of reinforced concrete (RC) beams under two-point monotonic static loadings.

Design/methodology/approach

Four quarter-size FE models with load and geometry symmetry conditions were constructed, the load-bearing capacity and associated mid-span deflections at critical points are verified against the full-scale experimental RC beams available in the literature. These developed FE models incorporated the tension stiffening effects and bond–slip behaviour. Theoretical analyses based on Indian standard code IS: 456–2000 and ACI 318–19 were also carried to verify the experimental and numerical predicted moments at critical loading points.

Findings

The load-deflection curves predicted through FE models exhibit closer corroboration with the experimental curves throughout the loading history. The contour plots for deflections, concrete principal stresses, reinforcement yield stresses are satisfactorily predicted by the FE models, which reveal the complete information of nonlinear behaviour of RC beams. The developed model well captured the initial and progressive crack patterns at each load increments.

Practical implications

The FE modelling is an efficient, valid and economical tool that is an alternative to the expensive experimental program and can be used to explore, analyse and fully understand the nonlinear response of RC beams under static loadings.

Originality/value

The ultimate moment capacity evaluated based on ACI 318–19 code provision show a better correlation with the experimental data as compared to the IS: 456–2000 code provision. The ultimate loads and associated centre-span deflections predicted by RN-2, RN-3, RB-12 and RB-16 FE model show a discrepancy of 1.66 and –0.49%, –4.68 and –0.60%, –9.38 and –14.53% and –4.37 and 4.21%, respectively, against the experimental results, which reveals that the developed ANSYS FE models predict consistent results and achieved a reasonable agreement with the experimental data.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 May 2006

Tong Hong Wang and Yi‐Shao Lai

The submodeling technique is incorporated in a finite element analysis to investigate the stress state of blind vias of different structural configurations.

Abstract

Purpose

The submodeling technique is incorporated in a finite element analysis to investigate the stress state of blind vias of different structural configurations.

Design/methodology/approach

The test vehicle is a multi‐chip module plastic ball grid array comprised of a four‐layer build‐up substrate. The calculated displacement field from the global model for the entire package is interpolated on the boundaries of the submodel, which involved the detailed structure of a blind via structure. Through the analysis, the potential of fracturing on the blind via is examined.

Findings

From the analysis it was found that filled blind vias in general have a smaller potential for delamination compared to the unfilled ones. Moreover, symmetric blind via layouts with a blind via located at the center of the through hole appear to be the most appropriate design for this particular test vehicle.

Originality/value

The value of the paper lies in its ability to provide insights into the prevention of fracturing of blind vias in a build‐up substrate through a novel numerical analysis using the submodeling technique.

Details

Circuit World, vol. 32 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 1998

W.C. Christie, P. Bettess and J.W. Bull

Demonstrates the simple but effective application of a standard finite element program (PAFEC), and the associated geometric modelling code (PIGS), to the improvement of the…

Abstract

Demonstrates the simple but effective application of a standard finite element program (PAFEC), and the associated geometric modelling code (PIGS), to the improvement of the design of an engineering component. The technique adopted involves augmenting material around zones of high stress and removing material in zones of low stress. This evolutionary procedure is related to the behaviour of bones in animals. The essentially two‐step procedure involves; finite element analysis of the preliminary component design using PAFEC; and, definition of a new geometry using PIGS, with selected stress contours giving an indication of the new shape. The technique, which proceeds iteratively, was first tested successfully on some classical academic optimisation problems. Its subsequent application to the industrial problem of a twin chamber pressurised extruded aluminium section, the primary component of an air drying system, resulted in material savings of up to 50 per cent and an associated drop in the maximum von Mises stress of 45 per cent. While this method does not determine the optimal structural form, it does generate substantial improvements in terms of material usage and reduced maximum stresses. It has the advantage that it can be used by any competent engineer with a working knowledge of the strength of materials, finite elements and structural form.

Details

Engineering Computations, vol. 15 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1956

A.E. Johnson

TURBINE disks of jet propulsion units operate under conditions of considerable complexity for which steam turbine practice and experience afford little assistance in matters of…

Abstract

TURBINE disks of jet propulsion units operate under conditions of considerable complexity for which steam turbine practice and experience afford little assistance in matters of calculation and design.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 January 2023

Kaiwen Pang, Xianbei Huang, Zhuqing Liu, Yaojun Li, Wei Yang and Jiaxing Lu

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

Abstract

Purpose

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

Design/methodology/approach

The kω and Shear-Stress Transport (SST) kω models are modified by using the complete eddy viscosity coefficient expression, and the latter is modified by using two sets of model coefficients. The two bifurcation models were tested in three cases: rotating channel flow with system rotation, Taylor–Couette flow with wall rotation and curvature effect and swirling flow through an abrupt axisymmetric expansion with inlet swirling flow.

Findings

In these flows, the bifurcation approach can significantly improve the prediction performance of the base model in the fluctuation velocity. The deviation of the BSkO model is slightly superior to the BkO model by about 2% in the Taylor–Couette flow. The prediction effect of the root-mean-square (RMS) velocity of the BSkO model increases by about 4–5% as the number of grids increases about 2.37 times, and the best is the Large Eddy Simulation (LES) grid used. Finally, compared with the SST kω model, the average iteration time of the SST with curvature correction (SST-CC), bifurcation kω (BkO) and bifurcation SST kω (BSkO) models increased by 27.7%, 86.9% and 62.3%, respectively.

Originality/value

This study is helpful to understand further the application of the bifurcation method in the turbulence model.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 39