Search results

1 – 10 of 442
Article
Publication date: 18 January 2024

Arish Ibrahim and Gulshan Kumar

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Abstract

Purpose

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Design/methodology/approach

This study used a fuzzy decision-making trial and evaluation laboratory approach to identify critical Industry 4.0 technologies that can be harmonized with Lean Six Sigma methodologies for achieving improved processes in manufacturing.

Findings

The research reveals that key technologies such as modeling and simulation, artificial intelligence (AI) and machine learning, big data analytics, automation and industrial robots and smart sensors are paramount for achieving operational excellence when integrated with Lean Six Sigma.

Research limitations/implications

The study is limited to the identification of pivotal Industry 4.0 technologies for Lean Six Sigma integration in manufacturing. Further studies can explore the implementation challenges and the quantifiable benefits of such integrations.

Practical implications

Integrating Industry 4.0 technologies with Lean Six Sigma enhances manufacturing efficiency. This approach leverages AI for predictive analysis, uses smart sensors for energy efficiency and adaptable robots for flexible production. It is vital for competitive advantage, significantly improving decision-making, reducing costs and streamlining operations in the manufacturing sector.

Social implications

The integration of Industry 4.0 technologies with Lean Six Sigma in manufacturing has significant social implications. It promotes job creation in high-tech sectors, necessitating advanced skill development and continuous learning among the workforce. This shift fosters an innovative, knowledge-based economy, potentially reducing the skills gap. Additionally, it enhances workplace safety through automation, reduces hazardous tasks for workers and contributes to environmental sustainability by optimizing resource use and reducing waste in manufacturing processes.

Originality/value

This study offers a novel perspective on synergizing advanced Industry 4.0 technologies with established Lean Six Sigma practices for enhanced process improvement in manufacturing. The findings can guide industries in prioritizing their technological adoptions for continuous improvement.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 1 December 2022

Azzah Al-Maskari, Thuraya Al Riyami and Sami Ghnimi

Knowing the students' readiness for the fourth industrial revolution (4IR) is essential to producing competent, knowledgeable and skilled graduates who can contribute to the…

5896

Abstract

Purpose

Knowing the students' readiness for the fourth industrial revolution (4IR) is essential to producing competent, knowledgeable and skilled graduates who can contribute to the skilled workforce in the country. This will assist the Higher Education Institutions (HEIs) to ensure that their graduates own skill sets needed to work in the 4IR era. However, studies on students' readiness and preparedness for the 4IR in developing countries such as the Sultanate of Oman are still lacking. Therefore, this study investigates students' readiness level and preparedness for the 4IR. The findings of this study will benefit the HEIs policymakers, administration, faculties, departments, industries and society at large since they will be informed of the student's readiness and preparedness toward industry 4.0.

Design/methodology/approach

The authors adopted the measures from the same context as previous studies in this study. The questionnaire was divided into three sections; the first part described the purpose and introduction of the search with the surety to keep the data confidential. The second part consisted of demographical information like gender, education. The last parts consisted of four subsections, question items in these parts are based on the related previous study. Characteristics consisted of 14 items, knowledge consisted of 18 items related to 4IR technologies, Organizational Dimension comprised of four items related to academic programs, curriculum and training. Preparedness contained two items. The participants have rated all the items in 5-Likert scale.

Findings

Results from structural equation modeling showed that students' characteristics, knowledge of 4IR technologies and organizational dimensions significantly impact their preparedness for the 4IR. The study also found that organizational dimensions have the highest impact on students' preparedness. Furthermore, the organizational dimension significantly influences students' knowledge of 4IR technology. Moreover, students' characteristics related to 4IR are significantly affected by their knowledge of 4IR technology and organizational dimension. The findings suggest that HEIs are responsible for increasing the adoption of 4IR, and therefore organizational dimensions such as the academic programs, training, technological infrastructure and others are all critical for preparing students for a better future and should be given a priority.

Research limitations/implications

This study has used academic programs and training to measure the organizational dimension. However, other important factors should be considered, such as technological infrastructure and leadership and governance of HEIs. Second, the current research depends on quantitative data, so future research should implement a mixed methodology (questionnaires, depth interviews, document analysis and focus group) to understand the factors affecting students' readiness for 4IR clearly. Finally, although the 4IR has numerous benefits, it also has challenges in its implementation, so future studies should focus on challenges encountered by different stakeholders in implementing 4IR-related technologies.

Practical implications

The curriculum must include mandatory courses related to IT infrastructure design, user experience programming, electronic measurement and control principles, and programming for data science. HEIs should also foster interdisciplinary knowledge by integrating IT, Engineering, Business and Sciences. Furthermore, the HEIs should develop their infrastructure to have smart campuses, labs, classrooms and libraries to make HEIs a space where knowledge can be generated and innovative solutions can be proposed. This entails HEIs offering necessary hardware, software and technical support because if the HEIs improve their technological resources, students will be capable of using 4IR-related technologies effectively.

Originality/value

The advancement of technology has resulted in the emergence of the Fourth Industrial Revolution (4IR), such as artificial intelligence, blockchain, robotics, cloud computing, data science, virtual reality and 3D printing. It is essential to investigate students' readiness for 4IR. However, there is no study as per researchers' knowledge talked about students readiness in HEIs in the Arab world. This study could be a basis for more research on students' perception of the 4IR covering students from various backgrounds and levels.

Details

Journal of Applied Research in Higher Education, vol. 16 no. 1
Type: Research Article
ISSN: 2050-7003

Keywords

Article
Publication date: 6 March 2024

Xiaohui Li, Dongfang Fan, Yi Deng, Yu Lei and Owen Omalley

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of…

Abstract

Purpose

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of enhanced physical training. The main objective is to identify key advancements in sensor fusion technology, evaluate its application in VR systems and understand its impact on physical training.

Design/methodology/approach

The research initiates by providing context to the physical training environment in today’s technology-driven world, followed by an in-depth overview of VR. This overview includes a concise discussion on the advancements in sensor fusion technology and its application in VR systems for physical training. A systematic review of literature then follows, examining VR’s application in various facets of physical training: from exercise, skill development and technique enhancement to injury prevention, rehabilitation and psychological preparation.

Findings

Sensor fusion-based VR presents tangible advantages in the sphere of physical training, offering immersive experiences that could redefine traditional training methodologies. While the advantages are evident in domains such as exercise optimization, skill acquisition and mental preparation, challenges persist. The current research suggests there is a need for further studies to address these limitations to fully harness VR’s potential in physical training.

Originality/value

The integration of sensor fusion technology with VR in the domain of physical training remains a rapidly evolving field. Highlighting the advancements and challenges, this review makes a significant contribution by addressing gaps in knowledge and offering directions for future research.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 June 2022

Larissa Statsenko, Aparna Samaraweera, Javad Bakhshi and Nicholas Chileshe

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and…

1890

Abstract

Purpose

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and their applications in the construction industry. The paper reviews C4.0 trends and potential areas for development.

Design/methodology/approach

In this research, a systematic literature review (SLR) methodology has been applied, including bibliographic coupling analysis (BCA), co-citation network analysis of keywords, the content analysis with the visualisation of similarities (VOSviewer) software and aggregative thematic analysis (ATA). In total, 170 articles from the top 22 top construction journals in the Scopus database between 2013 and 2021 were analysed.

Findings

Six C4.0 scenarios of applications were identified. Out of nine I4.0 technology domains, Industrial Internet of Things (IIoT), Cloud Computing, Big Data and Analytics had the most references in C4.0 research, while applications of augmented/virtual reality, vertical and horizontal integration and autonomous robotics yet provide ample avenues for the future applied research. The C4.0 application scenarios include efficient energy usage, prefabricated construction, sustainability, safety and environmental management, indoor occupant comfort and efficient asset utilisation.

Originality/value

This research contributes to the body of knowledge by offering a framework of C4.0 scenarios revealing the status quo of research published in the top construction journals into I4.0 technology applications in the sector. The framework evaluates current C4.0 research trends and gaps in relation to nine I4.0 technology domains as compared with more advanced industry sectors and informs academic community, practitioners and strategic policymakers with interest in C4.0 trends.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 1 April 2024

Frank Ato Ghansah

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the…

Abstract

Purpose

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the high complexity of accurately representing and modelling the physics behind the DTs process. This study thus organises and consolidates the fragmented literature on DTs implementation for smart buildings at the facility management stage by exploring the enablers, applications and challenges and examining the interrelationships amongst them.

Design/methodology/approach

A systematic literature review approach is adopted to analyse and synthesise the existing literature relating to the subject topic.

Findings

The study revealed six main categories of enablers of DTs for smart building at the facility management stage, namely perception technologies, network technologies, storage technologies, application technologies, knowledge-building and design processes. Three substantial categories of DTs application for smart buildings were revealed at the facility management stage: efficient operation and service monitoring, efficient building energy management and effective smart building maintenance. Subsequently, the top four major challenges were identified as being “lack of a systematic and comprehensive reference model”, “real-time data integration”, “the complexity and uncertainty nature of real-time data” and “real-time data visualisation”. An integrative framework is finally proposed by examining the interactive relationship amongst the enablers, the applications and the challenges.

Practical implications

The findings could guide facility managers/engineers to fairly understand the enablers, applications and challenges when DTs are being implemented to improve smart building performance and achieve user satisfaction at the facility management stage.

Originality/value

This study contributes to the knowledge body on DTs by extending the scope of the existing studies to identify the enablers and applications of DTs for smart buildings at the facility management stage and the specific challenges.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 April 2024

Vasudha Hegde, Narendra Chaulagain and Hom Bahadur Tamang

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and…

Abstract

Purpose

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and wildlife conservation. Considering its vast applications, this study aims to design, simulate, fabricate and test a bidirectional acoustic sensor having two cantilever structures coated with piezoresistive material for sensing has been designed, simulated, fabricated and tested.

Design/methodology/approach

The structure is a piezoresistive acoustic pressure sensor, which consists of two Kapton diaphragms with four piezoresistors arranged in Wheatstone bridge arrangement. The applied acoustic pressure causes diaphragm deflection and stress in diaphragm hinge, which is sensed by the piezoresistors positioned on the diaphragm. The piezoresistive material such as carbon or graphene is deposited at maximum stress area. Furthermore, the Wheatstone bridge arrangement has been formed to sense the change in resistance resulting into imbalanced bridge and two cantilever structures add directional properties to the acoustic sensor. The structure is designed, fabricated and tested and the dimensions of the structure are chosen to enable ease of fabrication without clean room facilities. This structure is tested with static and dynamic calibration for variation in resistance leading to bridge output voltage variation and directional properties.

Findings

This paper provides the experimental results that indicate sensor output variation in terms of a Wheatstone bridge output voltage from 0.45 V to 1.618 V for a variation in pressure from 0.59 mbar to 100 mbar. The device is also tested for directionality using vibration source and was found to respond as per the design.

Research limitations/implications

The fabricated devices could not be tested for practical acoustic sources due to lack of facilities. They have been tested for a vibration source in place of acoustic source.

Practical implications

The piezoresistive bidirectional sensor can be used for detection of direction of the sound source.

Social implications

In defense applications, it is important to detect the direction of the acoustic signal. This sensor is suited for such applications.

Originality/value

The present paper discusses a novel yet simple design of a cantilever beam-based bidirectional acoustic pressure sensor. This sensor fabrication does not require sophisticated cleanroom for fabrication and characterization facility for testing. The fabricated device has good repeatability and is able to detect the direction of the acoustic source in external environment.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 September 2023

Huiying (Cynthia) Hou, Daniel C.W. Ho and Yung Yau

Facilities management (FM) activities affect citizens’ health and safety, long-term urban environmental sustainability and the relationships between the built and natural…

Abstract

Purpose

Facilities management (FM) activities affect citizens’ health and safety, long-term urban environmental sustainability and the relationships between the built and natural environments of cities. This study aims to comprehend the status of smart FM tools application, how they are used to improve the delivery of FM services and the barriers to their implementation.

Design/methodology/approach

To investigate the current smart solutions that leverage the quality of FM service, a case study based on the FM practice in Hong Kong was carried out. The case study was conducted in two phases of data acquisition based on a qualitative research methodology. After conducting in-depth interviews to determine the application of smart FM tools in different types of properties and to identify the initiatives and barriers to smart FM tool application, three workshops were conducted to validate the findings and further investigate the influence of FM professionals on smart FM tools application in Hong Kong.

Findings

The findings of the case study revealed, firstly, that four types of smart FM tools – user-centric, safety and hygiene, maintenance and sustainability-oriented – are used to assist the delivery of FM services. Secondly, smart FM tools are shown to be useful in assisting FM activities. Thirdly, the existing barriers to smart FM tool application manifest differently in shopping malls, office buildings and residential buildings. Fourthly, smart FM tools are used to address the four attributes of user needs: comfort, health and wellbeing, convenience and information to occupants.

Originality/value

The value of this study lies in its focus on the industry level (FM industry) and the application process of smart FM tools in different types of property, revealing the benefits, initiatives and barriers to their future application. This study provides a comprehensive picture of the current status and elaborates the barriers to smart FM tool application, which will help FM practitioners to make strategic decisions on selecting and developing smart FM tools. Also, this study will facilitate smart FM tool application policy development.

Details

Facilities , vol. 42 no. 1/2
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 18 January 2023

Frank Ato Ghansah and Weisheng Lu

Digital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins…

Abstract

Purpose

Digital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins for smart buildings is still not enough. This study, therefore, performs an up-to-date comprehensive literature review to identify the major opportunities of digital twins for smart buildings.

Design/methodology/approach

Scientometric and content analysis are utilised to comprehensively evaluate the intellectual landscape of the general knowledge of digital twins for smart buildings.

Findings

The study uncovered 24 opportunities that were further categorised into four major opportunities: efficient building performance (smart “building” environment), efficient building process (smart construction site environment), information efficiency and effective user interactions. The study further identified the limitations of the existing studies and made recommendations for future research in the methodology adopted and the research domain. Five research domains were considered for future research, namely “real-time data acquisition, processing and storage”, “security and privacy issues”, “standardised and domain modelling”, “collaboration between the building industry and the digital twin developers” and “skilled workforce to enable a seamless transition from theory to practice”.

Practical implications

All stakeholders, including practitioners, policymakers and researchers in the field of “architecture, engineering, construction and operations” (AECO), may benefit from the findings of this study by gaining an in-depth understanding of the opportunities of digital twins and their implementation in smart buildings in the AECO industry. The limitations and the possible research directions may serve as guidelines for streamlining the practical adoption and implementation of digital twins for smart buildings.

Originality/value

This study adopted scientometric and content analysis to comprehensively assess the intellectual landscape of relevant literature and identify four major opportunities of digital twins for smart building, to which scholars have given limited attention. Finally, a research direction framework is presented to address the identified limitations of existing studies and help envision the ideal state of digital twins for smart buildings.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 23 April 2024

Fahim Ullah, Oluwole Olatunji and Siddra Qayyum

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning…

Abstract

Purpose

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning from discipline-specific experiences, this paper articulates recent advancements in the knowledge and concepts of G-IoT in relation to the construction and smart city sectors. It provides a scoping review for G-IoT as an overlooked dimension. Attention was paid to modern circularity, cleaner production and sustainability as key benefits of G-IoT adoption in line with the United Nations’ Sustainable Development Goals (UN-SDGs). In addition, this study also investigates the current application and adoption strategies of G-IoT.

Design/methodology/approach

This study uses the Preferred Reporting Items for Systematic and Meta-Analyses (PRISMA) review approach. Resources are drawn from Scopus and Web of Science repositories using apt search strings that reflect applications of G-IoT in the built environment in relation to construction management, urban planning, societies and infrastructure. Thematic analysis was used to analyze pertinent themes in the retrieved articles.

Findings

G-IoT is an overlooked dimension in construction and smart cities so far. Thirty-three scholarly articles were reviewed from a total of 82 articles retrieved, from which five themes were identified: G-IoT in buildings, computing, sustainability, waste management and tracking and monitoring. Among other applications, findings show that G-IoT is prominent in smart urban services, healthcare, traffic management, green computing, environmental protection, site safety and waste management. Applicable strategies to hasten adoption include raising awareness, financial incentives, dedicated work approaches, G-IoT technologies and purposeful capacity building among stakeholders. The future of G-IoT in construction and smart city research is in smart drones, building information modeling, digital twins, 3D printing, green computing, robotics and policies that incentivize adoption.

Originality/value

This study adds to the normative literature on envisioning potential strategies for adoption and the future of G-IoT in construction and smart cities as an overlooked dimension. No previous study to date has reviewed pertinent literature in this area, intending to investigate the current applications, adoption strategies and future direction of G-IoT in construction and smart cities. Researchers can expand on the current study by exploring the identified G-IoT applications and adoption strategies in detail, and practitioners can develop implementation policies, regulations and guidelines for holistic G-IoT adoption.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 442