Search results

1 – 10 of over 2000
To view the access options for this content please click here
Article
Publication date: 7 September 2012

Yalei Liu, Xiaohui Gu, Yunmeng Lian and Heng Liu

The purpose of this paper is to demonstrate the theoretical relationship between the layout of four‐sensor dynamic acoustic array tracking system and systematic…

Abstract

Purpose

The purpose of this paper is to demonstrate the theoretical relationship between the layout of four‐sensor dynamic acoustic array tracking system and systematic observation accuracy, and provide an algorithm to determine the optimal arrangement of four‐sensor acoustic array and an indicator to evaluate acoustic array system measurement accuracy.

Design/methodology/approach

In the present paper, the measurement principle of the four‐sensor dynamic acoustic array tracking system is analyzed, and the system observation model and the conversion relationship between models are established. Subsequently, the optimization algorithm for the four‐sensor dynamic acoustic array is deduced, the theoretical optimal arrangement of the four‐sensor dynamic acoustic array tracking measurement system is obtained based on the optimal position dilution of precision function (PDOPF) of 2D target, and the static experimental study on sound‐source bearing estimation is designed. The theoretical results are compared with the experimental results of the present study.

Findings

The measurement accuracy of the four‐sensor dynamic acoustic array tracking system is largely dependent on the layout of the acoustic sensor. Theoretical studies and experimental results demonstrated that an optimal PDPOF can be used to analyze the rationality of the layout. It can also serve as an indicator for the layout of the four‐sensor dynamic acoustic array tracking system.

Originality/value

The PDOPF value is presented as an indicator for the evaluation of the four‐sensor dynamic acoustic array systematic observation accuracy based on theoretical analysis. The feasibility of the indicator and the rationality of the sensor layout in practical engineering application are verified through experimental studies on sound‐source bearing estimation. The higher the PDOPF value is, the lower the accuracy of the system will be.

To view the access options for this content please click here
Article
Publication date: 19 January 2015

Alif Syarafi Mohamad Nor, Mohd Amri Md Yunus, Sophan Wahyudi Nawawi, Sallehuddin Ibrahim and Mohd Fua'ad Rahmat

The purpose of this study is to determine the contamination level in natural water resources because the tremendous development in the agriculture sector has increased the…

Abstract

Purpose

The purpose of this study is to determine the contamination level in natural water resources because the tremendous development in the agriculture sector has increased the amount of contamination in natural water sources. Hence, the water is polluted and unsafe to drink.

Design/methodology/approach

Three types of sensor arrays were suggested: parallel, star and delta. The simulation of all types of sensor array was carried out to calculate the sensors’ impedance value, capacitance and inductance during their operation to determine the best sensor array. The contamination state was simulated by altering the electrical properties values of the environmental domain of the model to represent water contamination.

Findings

The simulation results show that all types of sensor array are sensitive to conductivity, σ, and permittivity, ɛ (i.e. contaminated water). Furthermore, a set of experiments was conducted to determine the relationship between the sensor’s impedance and the water’s nitrate and sulphate contamination. The performance of the system was observed where the sensors were tested, with the addition of distilled water with different concentrations of potassium nitrate and potassium sulphate. The sensitivity of the developed sensors was evaluated and the best sensor was selected.

Practical implications

Based on the outcomes of the experiments, the star sensor array has the highest sensitivity and can be used to measure nitrate and sulphate contaminations in water.

Originality/value

The star sensor array presented in this paper has the potential to be used as a useful low-cost tool for water source monitoring.

Details

Sensor Review, vol. 35 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 1993

J.K. Atkinson

The University of Southampton has been active in the area of thick‐film sensors since their initial conception through to the present. Recent research at the university…

Abstract

The University of Southampton has been active in the area of thick‐film sensors since their initial conception through to the present. Recent research at the university has concerned the use of thick‐film sensor arrays for the discrimination of chemical species in both gaseous and dissolved form. In addition, the detection of many physical parameters is now being addressed through the use of arrays of sensing elements with a view to improving on factors such as noise immunity, environmental cross‐sensitivity and long‐term accuracy. In the area of chemical sensing, extensive use has been made of thick‐film technology to allow low‐cost arrays of chemical sensors to be fabricated. The lack of specificity exhibited by the individual sensing elements has been demonstrably overcome through the use of signal processing techniques applied to the outputs of the array of sensors. Thick‐film chemical sensor research currently under way at Southampton includes a UK DTI/SERC funded LINK project concerning dissolved species monitoring for water quality assessment. Additionally, gas sensor arrays for the detection of toxic and flammable gases are being explored as part of a well established ongoing research programme. The use of thick‐film technology for the fabrication of physical sensors has been extensively documented. Current research at the University of Southampton includes an industrially sponsored project involving the use of thick‐film strain sensing resistors in the design of an accelerometer. The use of Z‐axis piezoresistivity and an array approach to solving noise and drift problems is seen as a significant novelty in this work.

Details

Microelectronics International, vol. 10 no. 3
Type: Research Article
ISSN: 1356-5362

To view the access options for this content please click here
Article
Publication date: 9 January 2020

Shengzhi Chen, Minghua Zhu, Qing Zhang, Xuesong Cai and Bo Xiao

The differential magnetic gradient tensor system is usually constructed from the three-axis magnetic sensor array. While the effects of measurement error, sensor

Abstract

Purpose

The differential magnetic gradient tensor system is usually constructed from the three-axis magnetic sensor array. While the effects of measurement error, sensor performance and baseline distance on localization performance of such systems have been widely reported, the research about the effect of spatial design of sensor array is less presented. This paper aims to provide a spatial design method of sensor array and corresponding optimization strategy to localization based on magnetic tensor gradient to get the optimum design of the sensor array. Based on the results of simulation, magnetic localization systems constructed from the proposed array and the traditional array have been built to carry out a localization experiment. The results of experiment have verified the effectiveness of magnetic localization based on the proposed array.

Design/methodology/approach

The authors focus on the localization of the magnetic target based on magnetic gradient by using three-axis magnetic sensor array and combine a design method with corresponding optimization strategy to get the optimum design of the sensor array.

Findings

This paper provides an array design and optimization method for magnetic target localization based on magnetic gradient to improve the localization performance.

Originality/value

In this paper, the authors focus on the magnetic localization based on magnetic gradient by using three-axis magnetic sensors and study the effect of the spatial design of sensor array on localization performance.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 7 September 2012

Xuefeng Zhang, Yulong Zhao and Xuelei Zhang

The purpose of this paper is to provide a thin tactile force sensor array based on conductive rubber and to offer descriptions of the sensor design, fabrication and test.

Abstract

Purpose

The purpose of this paper is to provide a thin tactile force sensor array based on conductive rubber and to offer descriptions of the sensor design, fabrication and test.

Design/methodology/approach

The sensor array consists of a sandwich structure. Sensing elements are distributed discretely in the sensor. Each sensing element has two electrodes and a piece of conductive rubber with piezoresistive property. The electrodes, as well as the conductive trace for signal transmission, are printed on the substrate layer by the screen printing technique. A scanning circuit based on zero potential method and an experimental set‐up based on balance to characterize the sensor array are designed and implemented in the test of the sensor array.

Findings

Experimental results verify the validity of the sensor array in measuring the vertical tactile force between the sensing elements and the object.

Research limitations/implications

In this paper, all the sensors are tested without calibration procedures and the procedure of the dynamic test is implemented by manual operation.

Practical implications

The sensor array could be applied to measure the plantar force for gait detection in clinical applications.

Originality/value

The paper presents a tactile force sensor array with discrete sensing elements to essentially restrict the cross‐talk among sensing elements. This paper will provide many practical details that can help others in the field.

Details

Sensor Review, vol. 32 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 21 September 2015

Alireza Hassanbeiglou, Masoud Kalantari, Elaheh Mozaffari, Javad Dargahi and József Kövecses

The purpose of this paper is to introduce a new tactile array sensor into the medical field to enhance current robotic minimally invasive surgery (RMIS) procedures that…

Abstract

Purpose

The purpose of this paper is to introduce a new tactile array sensor into the medical field to enhance current robotic minimally invasive surgery (RMIS) procedures that are still limited in scope and versatility. In this paper, a novel idea is proposed in which a tactile sensor array can measure rate of displacement in addition to force and displacement of any viscoelastic material during the course of a single touch. To verify this new array sensor, several experiments were conducted on a diversity of tissues from which it was concluded that this newly developed sensory offers definite and significant enhancements.

Design/methodology/approach

The proposed array sensor is capable of extracting force, displacement and displacement rate in the course of a single touch on tissues. Several experiments have been conducted on different tissues and the array sensor to verify the concept and to verify the output of the sensor.

Findings

It is shown that this new generation of sensors are required to distinguish the difference in hardness degrees of materials with viscoelastic behavior.

Originality/value

In this paper, a new generation of tactile sensors is proposed that is capable of measuring indentation time in addition to force and displacement. This idea is completely unique and has not been submitted to any conference or journal.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 15 July 2021

Mehdi Habibi, Yunus Dawji, Ebrahim Ghafar-Zadeh and Sebastian Magierowski

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to…

Abstract

Purpose

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling full human genome assembly. This evolution has been powered not only by improvements in the sensors themselves, but also in the assisting microelectronic CMOS readout circuitry closely interfaced to them. In this light, this paper aims to review established and emerging nanopore-based sensing modalities considered for DNA sequencing and CMOS microelectronic methods currently being used.

Design/methodology/approach

Readout and amplifier circuits, which are potentially appropriate for conditioning and conversion of nanopore signals for downstream processing, are studied. Furthermore, arrayed CMOS readout implementations are focused on and the relevant status of the nanopore sensor technology is reviewed as well.

Findings

Ion channel nanopore devices have unique properties compared with other electrochemical cells. Currently biological nanopores are the only variants reported which can be used for actual DNA sequencing. The translocation rate of DNA through such pores, the current range at which these cells operate on and the cell capacitance effect, all impose the necessity of using low-noise circuits in the process of signal detection. The requirement of using in-pixel low-noise circuits in turn tends to impose challenges in the implementation of large size arrays.

Originality/value

The study presents an overview on the readout circuits used for signal acquisition in electrochemical cell arrays and investigates the specific requirements necessary for implementation of nanopore-type electrochemical cell amplifiers and their associated readout electronics.

To view the access options for this content please click here
Article
Publication date: 20 March 2017

Sajad Pirsa and Fardin Mohammad Nejad

The purpose of this paper is to construct an array of sensors using polypyrrole–zinc oxide (PPy–ZnO) and PPy–vanadium (V; chemical formula: V2O5) fibers. To test responses…

Abstract

Purpose

The purpose of this paper is to construct an array of sensors using polypyrrole–zinc oxide (PPy–ZnO) and PPy–vanadium (V; chemical formula: V2O5) fibers. To test responses of sensors, a central composite design (CCD) has been used. The results of the CCD technique revealed that the developed sensors are orthogonally sensitive to diacetyl, lactic acid and acetic acid. In total, 20 different mixtures of diacetyl, lactic acid and acetic acid were prepared, and the responses of the array sensors were recorded for each mixture.

Design/methodology/approach

A response surface regression analysis has been used for correlating the responses of the sensors to diacetyl, lactic acid and acetic acid concentrations during the gas phase in food samples. The developed multivariate model was used for simultaneous determination of diacetyl, lactic acid and acetic acid concentrations. Some food samples with unknown concentrations of diacetyl, lactic acid and acetic acid were provided, and the responses of array sensors to each were recorded.

Findings

The responses of each sensor were considered as target response in a response optimizer, and by an overall composite desirability, the concentration of each analyte was predicted. The present work suggests the applicability of the response surface regression analysis as a modeling technique for correlating the responses of sensor arrays to concentration profiles of diacetyl, lactic acid and acetic acid in food samples.

Originality/value

The PPy–ZnO and PPy–V2O5 nanocomposite fibers were synthesized by chemical polymerization. The provided conducting fibers, PPy–ZnO and PPy–V2O5, were used in an array gas sensor system for the analysis of volatile compounds (diacetyl, lactic acid and acetic acid) added to yogurt and milk samples.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 10 June 2014

Pengfei Jia, Fengchun Tian, Shu Fan, Qinghua He, Jingwei Feng and Simon X. Yang

The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of…

Abstract

Purpose

The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy.

Design/methodology/approach

An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification.

Findings

The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection.

Research limitations/implications

To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose.

Practical implications

In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring.

Originality/value

The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.

Details

Sensor Review, vol. 34 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 8 March 2021

Tanushree Agarwal, Fatemeh Rahmani, Ishtique Zaman, Federico Gasbarri, Keivan Davami and Mohammadreza Barzegaran

This paper aims to develop a comprehensive model of a magnetic sensor array that will be operational for a multitude of electric components in continuous and nonintrusive…

Downloads
170

Abstract

Purpose

This paper aims to develop a comprehensive model of a magnetic sensor array that will be operational for a multitude of electric components in continuous and nonintrusive condition monitoring (CM) or in readiness assessment (RA) applications.

Design/methodology/approach

A universal nonintrusive model of a flexible antenna array is introduced to monitor and identify failures in electric machine drives. An adjustable sensor is designed to serve as a RA for a vast range of electrical elements in a typical power system by capturing the low-frequency radiated magnetic fields.

Findings

The optimal placement of the most sensitive radiated fields from several components has been discovered in this case study, enabling the detection of healthy current flow throughout. Thereafter, the short-circuit investigation, representing faulty situations, is implemented and compared with healthy cases.

Practical implications

This sensing technique can be used for nonintrusive CM of components that are out of reach and cannot have the sensor to be held around it such as components in offshore winds, wind energy generation and power and chemical plants.

Originality/value

The results are provided for three commonly used machines with a single sensor array with numerous settings. The three dimensional (3 D) finite element analysis is applied in the structuring of the sensor, detection of the optimum location and recognition of faults in the machines. Finally, based on the setup design, 3 D printing is used for the construction of the sensor array. Thus, the sensor array with fault detection avoids major component failures and increases system reliability/resiliency.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 2000