Search results

1 – 10 of over 2000
Article
Publication date: 2 May 2023

Huan Liu, Rui Wang, Junyao Wang, Xingyu Chen, Yunpeng Li, Bowen Cui, Tianhong Lang and Weihua Zhu

Flexible pressure sensor arrays have promising applications in analog haptics, reconfiguration of sensory functions, artificial intelligence, wearable devices and human-computer…

Abstract

Purpose

Flexible pressure sensor arrays have promising applications in analog haptics, reconfiguration of sensory functions, artificial intelligence, wearable devices and human-computer interaction. The force disturbance generated by the connecting material between the sensor array units will reduce the detection accuracy of the unit. The purpose of this paper is to propose a flexible pressure sensor with interference immunity capability. A C-type bridge flexible piezoelectric structure is used to improve the pressure perturbation. The interference immunity capability of the sensor has been improved.

Design/methodology/approach

In this paper, a C-type pressure sensor array structure by rapid injection moulding is manufactured through the positive piezoelectric effect of a piezoelectric material. The feasibility of C-type interference immunity structure in a flexible sensor array is verified by further analysis and experiment. A flexible pressure sensor array with C-type interference immunity structure has been proposed.

Findings

In this paper, we present the results of the perturbation experiment results of the C-type pressure sensor array, showing that the perturbation error is less than 8%. The test of the flexible sensor array show that the sensor can identify the curved angle of up to 120 °, and the output sensitivity of the sensor in the horizontal state reaches 0.12 V/N, and the sensor can withstand the pressure of 80 N. The flexible sensor can work stably in the stretch rate range of 0–8.6% and the stretch length range of 0–6 mm.

Originality/value

In this paper, C-type pressure sensor array structure is fabricated by rapid injection moulding for the first time. The research in this paper can effectively reduce the disturbance of input pressure on the sensor’s internal array and improve the output accuracy. The sensor can intuitively reflect the number of fingers sliding on the sensor by the order in which the maximum voltage appears. Due to the strong interference immunity capability and flexibility of the flexible sensor array mechanism, it has a broad application prospect in the practical fields of haptic simulation, perceptual function reconstruction, artificial intelligence, wearable devices and human–computer interaction.

Article
Publication date: 1 August 2023

Haifeng Fang, Yangyang Wei and Shuo Dong

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to…

Abstract

Purpose

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to propose a three-layer structure of the interdigital flexible tactile sensor.

Design/methodology/approach

The sensor consists of a bottom electrode layer, a middle pressure-sensitive layer and a top indenter layer. First, the pressure sensitive material, structure design, fabrication process and circuit design of the sensor are introduced. Then, the calibration and performance test of the designed sensor is carried out. Four functions are used to fit and calibrate the relationship between the output voltage of the sensor and the contact force. Finally, the contact force sensing test of different weight objects and the flexible test of the sensor are carried out.

Findings

The performance test results show that the sensitivity of the sensor is 0.93 V/N when it is loaded with 0–3 N and 0.23 V/N when it is loaded with 3–5 N. It shows good repeatability, and the cross-interference between the sensing units is generally low. The contact force sensing test results of different weight objects show that the proposed sensor performs well in contact force. Each part of the sensor is a flexible material, allowing the sensor to achieve bending deformation, so that the sensor can better perceive the contact signs of the grasped object.

Practical implications

The sensor can paste the surface of the paper robot’s gripper to measure the contact force of the grasping object and estimate the contour of the object.

Originality/value

In this paper, a three-layer interdigital flexible tactile sensor is proposed, and the structural parameters of the interdigital electrode are designed to improve the sensitivity and response speed of the sensor. The indenter with three shapes of the prism, square cylinder and hemisphere is preliminarily designed and the prism indenter with better conduction force is selected through finite element analysis, which can concentrate the external force in the sensing area to improve the sensitivity. The sensor designed in this paper can realize the measurement of contact force, which provides a certain reference for the field of robot tactile.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 October 2020

Man Zhang, Liangping Xia, Suihu Dang, Lifang Shi, Axiu Cao and Chunlei Du

The pressure sensors can convert external pressure or mechanical deformation into electrical power and signal, which cannot only detect pressure or strain changes but also harvest…

Abstract

Purpose

The pressure sensors can convert external pressure or mechanical deformation into electrical power and signal, which cannot only detect pressure or strain changes but also harvest energy as a self-powered sensor. This study aims to develop a self-powered flexible pressure sensor based on regular nanopatterned polymer films.

Design/methodology/approach

In this paper, the self-powered flexible pressure sensor is mainly composed of two nanopatterned polymer films and one conductive electrode layer between them, which is a sandwich structure. The regular nanostructures increase the film roughness and contact area to enhance the friction effect. To enhance the performance of the pressure sensor, different nanostructures on soft polymer sensitive layers are fabricated using UV nanoimprint lithography to generate more triboelectric charges.

Findings

Finally, the self-powered flexible pressure sensor is prepared, which consists of sub-200 nm resolution regular nanostructures on the surface of the elastic layer and an indium tin oxide electrode thin film. By converting the friction mechanical energy into electrical power, a maximum power of 423.8 mW/m2 and the sensitivity of 0.8 V/kPa at a frequency of 5 Hz are obtained, which proves the excellent sensing performance of the sensor.

Originality/value

The acquired electrical power and pressure signal by the sensor would be processed in the signal process circuit, which is capable of immediately and sustainably driving the highly integrated self-powered sensor system. Results of the experiments show that this new pressure sensor is a potential method for personal pressure monitoring, featured as being wearable, cost-effective, non-invasive and user-friendly.

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 May 2018

Xiaozhou Lu, Xi Xie, Qiaobo Gao, Hanlun Hu, Jiayi Yang, Hui Wang, Songlin Wang and Renjie Chen

The hands of intelligent robots perceive external stimuli and respond effectively according to tactile or pressure sensors. However, the traditional tactile and pressure sensors

Abstract

Purpose

The hands of intelligent robots perceive external stimuli and respond effectively according to tactile or pressure sensors. However, the traditional tactile and pressure sensors cannot perform human-skin-like intelligent properties of high sensitivity, large measurement range, multi-function and flexibility simultaneously. The purpose of this paper is to present a flexible tactile-pressure sensor based on hyper-elastics polydimethylsiloxane and plate capacitance.

Design/methodology/approach

With regard to this problem, this paper presents a flexible tactile-pressure sensor based on hyper-elastics PDMS and plate capacitance. The sensor has a size of 10 mm × 10 mm × 1.3 mm and is composed of four upper electrodes, one middle driving electrode and one lower electrode. The authors first analyzed the structure and the tactile-pressure sensing principle of human skin to obtain the design parameters of the sensor. Then they presented the working principle, material selection and mechanical structure design and fabrication process of the sensor. The authors also fabricated several sample devices of the sensor and carried out experiments to establish the relationship between the sensor output and the pressure.

Findings

The results show that the tactile part of the sensor can measure a range of 0.05-1N/mm2 micro pressure with a sensitivity of 2.93 per cent/N and a linearity of 0.03 per cent. The pressure part of the sensor can measure a range of 1-30N/mm2 pressure with a sensitivity of 0.08 per cent/N and a linearity of 0.07 per cent.

Originality/value

This paper analyzes the tactile and pressure sensing principles of human skin and develop an intelligent sensitive human-skin-like tactile-pressure sensor for intelligent robot perception systems. The sensor can achieve to imitate the tactile and pressure function simultaneously with a measurement resolution of 0.01 N and a spatial resolution of 2 mm.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 September 2016

Jianli Cui, Junping Duan, Binzhen Zhang and Xueli Nan

This paper aims to provide a fabrication and measurement of a highly stretchable pressure sensor with a “V-type” array microelectrode on a grating PDMS substrate.

Abstract

Purpose

This paper aims to provide a fabrication and measurement of a highly stretchable pressure sensor with a “V-type” array microelectrode on a grating PDMS substrate.

Design/methodology/approach

First, the “V-type” array structure on the silicon wafer was fabricated by the MEMS technology, and the fabrication process included ultra-violet lithography and silicon etching. The “V-type” array structure on the master mold was then replicated into polycarbonate, which served as an intermediate, negative mold, using a conventional nanoimprint lithography technique. The negative mold was subsequently used in the PDMS molding process to produce PDMS “V-type” array structures with the same structures as the master mold. An Ag film was coated on the PDMS “V-type” array structure surface by the magnetron sputtering process to obtain PDMS “V-type” array microelectrodes. Finally, a PDMS prepolymer was prepared using a Sylgard184 curing agent with a weight ratio of a 20:1 and applied to the cavity at the middle of the two-layer PDMS “V-type” array microelectrode template to complete hot-press bonding, and a pressure sensor was realized.

Findings

The experimental results showed that the PDMS “V-type” array microelectrode has high stretchability of 65 per cent, temperature stability of 0.0248, humidity stability of 0.000204, bending stability and cycle stability. Capacitive pressure sensors with a “V-type” array microelectrode exhibit ideal initial capacitance (111.45 pF), good pressure sensitivity of 0.1143 MPa-1 (0-0.35 Mpa), fast response and relaxation times (<200 ms), high bending stability, high temperature/humidity stability and high cycle stability.

Originality/value

The PDMS “V-type” array structure microelectrode can be used to fabricate pressure sensors and is highly flexible, crack-free and durable.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 January 2023

Huimei Zhang, Jiawen Zhang, Yan Zhang, Xu Ye, Yuanyuan Li and Ping Wang

In this paper, a new flexible piezoresistive pressure sensor which uses non-woven fabric as the flexible substrate and sliver nanowires (AgNWs) as the conductive materials was…

Abstract

Purpose

In this paper, a new flexible piezoresistive pressure sensor which uses non-woven fabric as the flexible substrate and sliver nanowires (AgNWs) as the conductive materials was reported.

Design/methodology/approach

The compression test of the pressure sensors was carried out at different compression frequencies and found that the sensors had more than 5,000 times reusability at high frequency.

Findings

When pressure sensors were applied to different parts of the human body, such as fingers, elbows, knees and throat, the sensors respond differently to different degrees of movement.

Originality/value

The proposed pressure sensor has broad application prospects in the human motion detection.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2002

C.M.A. Ashruf

This article gives an overview on the currently available techniques for the measurement of interface pressure or force between (soft) objects. These techniques make use of single…

5507

Abstract

This article gives an overview on the currently available techniques for the measurement of interface pressure or force between (soft) objects. These techniques make use of single sensor elements as well as integrated arrays of sensors to obtain pressure maps. Most of these devices originate from biomedical applications such as the evaluation of wheelchairs and the prevention of pressure ulcers in hospital beds. Today, these technologies are used in a wide range of applications such as computer peripherals, robotics, automotive systems and consumer electronics. These typical applications are considered in the first section. Next, the sensor technologies (and their suppliers) are briefly described and compared. The list of suppliers and technologies is intended as an overview and may not be complete. Finally, new developments in this field are discussed.

Details

Sensor Review, vol. 22 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 March 2021

Riyaz Ali Shaik and Elizabeth Rufus

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Abstract

Purpose

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Design/methodology/approach

Research papers on different shape sensing methodologies of objects with large area, published in the past 15 years, are reviewed with emphasis on contact-based shape sensors. Fiber optics based shape sensing methodology is discussed for comparison purpose.

Findings

LAFE-based shape sensors of humanoid robots incorporating advanced computational data handling techniques such as neural networks and machine learning (ML) algorithms are observed to give results with best resolution in 3D shape reconstruction.

Research limitations/implications

The literature review is limited to shape sensing application either two- or three-dimensional (3D) LAFE. Optical shape sensing is briefly discussed which is widely used for small area. Optical scanners provide the best 3D shape reconstruction in the noncontact-based shape sensing; here this paper focuses only on contact-based shape sensing.

Practical implications

Contact-based shape sensing using polymer nanocomposites is a very economical solution as compared to optical 3D scanners. Although optical 3D scanners can provide a high resolution and fast scan of the 3D shape of the object, they require line of sight and complex image reconstruction algorithms. Using LAFE larger objects can be scanned with ML and basic electronic circuitory, which reduces the price hugely.

Social implications

LAFE can be used as a wearable sensor to monitor critical biological parameters. They can be used to detect shape of large body parts and aid in designing prosthetic devices. Tactile sensing in humanoid robots is accomplished by electronic skin of the robot which is a prime example of human–machine interface at workplace.

Originality/value

This paper reviews a unique feature of LAFE in shape sensing of large area objects. It provides insights from mechanical, electrical, hardware and software perspective in the sensor design. The most suitable approach for large object shape sensing using LAFE is also suggested.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 2000