Search results

1 – 10 of 389
Open Access
Article
Publication date: 11 April 2024

Shiwen Gu and Inkyo Cheong

In this paper, we evaluated the impact of the US “Chip Act” on the participation of the Chinese electronics industry in the global value chain based on the dynamic CGE model. This…

Abstract

Purpose

In this paper, we evaluated the impact of the US “Chip Act” on the participation of the Chinese electronics industry in the global value chain based on the dynamic CGE model. This is a meaningful attempt to use the GTAP-VA model to analyze the electronics industry in China.

Design/methodology/approach

We employ a Dynamic GTAP-VA Model to quantitatively evaluate the economic repercussions of the “Chip Act” on the Chinese electronic industries' GVC participation from 2023 to 2040.

Findings

The findings depict a discernible contraction in China’s electronic sector by 2040, marked by a −2.95% change in output, a −3.50% alteration in exports and a 0.45% increment in imports. Concurrently, the U.S., EU and certain Asian economies exhibit expansions within the electronic sector, indicating a GVC realignment. The “Chip Act” implementation precipitates a significant divergence in GVC participation across different countries and industries, notably impacting the electronics sector.

Research limitations/implications

Through a meticulous temporal analysis, this manuscript unveils the nuanced economic shifts within the GVC, substantially bridging the empirical void in existing literature. This narrative accentuates the profound implications of policy regulations on global trade dynamics, contributing to the discourse on international economic policy and industry evolution.

Practical implications

We evaluated the impact of the US “Chip Act” on the participation of the Chinese electronics industry in the global value chain based on the dynamic CGE model. This is a meaningful attempt to use the GTAP-VA model to analyze the electronics industry in China.

Social implications

The interaction between policy regulations and global value chain (GVC) dynamics is pivotal in understanding the contemporary global trade framework, especially within technology-driven sectors. The US “Chips Act” represents a significant regulatory milestone with potential ramifications on the Chinese electronic industries' engagement in the GVC.

Originality/value

The significance of this paper is that it quantifies for the first time the impact of the US Chip Act on the GVC participation index of East Asian countries in the context of US-China decoupling. With careful consideration of strategic aspects, this paper substantially fills the empirical gap in the existing literature by presenting subtle economic changes within GVCs, highlighting the profound implications of policy regulation on global trade dynamics.

Details

Journal of International Logistics and Trade, vol. 22 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Article
Publication date: 5 May 2022

Shu-Hao Chang

How prospective or emerging technologies can be supported through government-funded research projects has gradually received global attention. However, previous studies have…

Abstract

Purpose

How prospective or emerging technologies can be supported through government-funded research projects has gradually received global attention. However, previous studies have primarily focused on the effects of government funding on subsequent technological development, the overall economy or social welfare of a country or corporate research and development (R&D) activities. These studies have not examined the technology distribution and development trends of government-funded research from a comprehensive technology perspective. In addition, previous measurements of the influence of government-funded R&D projects faced the difficulty of transferring the research achievements of government-funded research to the commercial market.

Design/methodology/approach

Patents can provide a preliminary understanding of the collaboration, development focus and status of market technologies. Accordingly, the purpose of this study was to examine the development directions of patented technologies engendered from government-funded research projects. Analyzing the network of government-funded patented technologies helped identify the current status and location of specific technologies in a patent network as well as the hotspot technologies in government-funded research projects that correspond to the market.

Findings

The results of this study indicated that the technologies obtaining government-funded patents mainly consist of advanced materials and semiconductors and that the technological focus has shifted over the years. Nanotechnology, pharmaceutical technology and sanitary technology have gradually become the technologies receiving most of government-funded patents. The trend of development of these technologies also corresponds to the emerging technologies advocated by countries worldwide in recent years.

Originality/value

This study provided a comprehensive verification of the government-funded patented technologies from a macro perspective by identifying key technologies using technology network analysis. The findings of this study can serve as a reference for the allocation of governmental R&D resources and the promotion of novel technologies in the private sector.

Details

International Journal of Innovation Science, vol. 15 no. 2
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 1 December 2023

Xufan Zhang, Xue Fan and Mingke He

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of…

Abstract

Purpose

The challenges faced by China's high-end equipment manufacturing (HEEM) industry are becoming clearer in the process of global supply chain (GSC) reconfiguration. The purpose of this study is to investigate how China's HEEM industry has been affected by the GSC reconfiguration, as well as its short- and long-term strategies.

Design/methodology/approach

The authors adopted a multi-method approach. Interviews were conducted in Phase 1, while a three-round Delphi survey was conducted in Phase 2 to reach consensus at the industry level.

Findings

The GSC reconfiguration affected China's HEEM supply chain (SC). Its direct effects include longer lead times, higher purchasing prices and inconsistent supply and inventory levels of key imported components and materials. Its indirect effects include inconsistent product quality and cash flows. In the short term, China's HEEM enterprises have sought to employ localized substitutes, while long-term strategies include continuous technological innovation, industry upgrades and developing SC resilience.

Originality/value

This study not only encourages Chinese HEEM enterprises to undertake a comprehensive examination of their respective industries but also provides practical insights for SC scholars, policymakers and international stakeholders interested in how China's HEEM industry adapts to the GSC reconfiguration and gains global market share.

Details

International Journal of Physical Distribution & Logistics Management, vol. 54 no. 1
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 21 February 2022

Mutaju Isaack Marobhe and Pastory Dickson

The purpose of this article is to examine the impact of panic and hysteria news on the volatility of microchip stocks during Covid-19.

Abstract

Purpose

The purpose of this article is to examine the impact of panic and hysteria news on the volatility of microchip stocks during Covid-19.

Design/methodology/approach

The authors use the P-GARCH (1,1) and random effects regression to model/examine the impact of Covid-19 panic and hysteria news on the overall microchip sector and individual firms. They further utilize the SVAR model to examine volatility spill-over from the microchip sector to the automobile and main technology sectors. Their time frame ranges from 6th January 2020 to 30th June 2021 to capture the effects of both waves of Covid-19.

Findings

The study results firstly reveal that Covid-19 panic and hysteria news have tremendous potential to model the volatility of microchip sector stock thus confirming the information discovery hypothesis. The authors secondly demonstrate the influence of Covid-19 cases, deaths and policy stringency on stock returns of individual microchip companies in different countries. Finally the authors confirm the presence of volatility spill-over from the microchip sector to other technology sectors.

Research limitations/implications

The authors provide evidence to support the profundity of bad news in predicting stock behavior. The study results depict how Covid-19 has affected microchip stocks so that policy initiatives can be taken to protect the industry. The presence of volatility spill-over signifies the importance of diversifying portfolios by mixing technology and non-technology stocks.

Originality/value

The research strand on Covid-19 and individual sectoral stocks has received limited scholarly attention despite unparallel effects of the pandemic on different sectors.

Details

Review of Behavioral Finance, vol. 15 no. 4
Type: Research Article
ISSN: 1940-5979

Keywords

Article
Publication date: 7 August 2021

Priya Singh, Vandana Niranjan and Ashwni Kumar

Recent advancements in the domain of smart communication systems and technologies have led to the augmented developments for very large scale integrated circuit designs in…

Abstract

Purpose

Recent advancements in the domain of smart communication systems and technologies have led to the augmented developments for very large scale integrated circuit designs in electro-magnetic applications. Increasing demands for low power, compact area and superior figure of merit–oriented circuit designs are the trends of the recent research studies. Hence, to accomplish such applications intended for optical communications, the transimpedance amplifier (TIA) was designed.

Design/methodology/approach

In this research work, the authors present a multi-layer active feedback structure which mainly composes a transimpedance stage and a gain stage followed by a low pass filter. This structure enables to achieve improved input impedance and superior gain. A simplified cascaded amplifier has also been designed in a hierarchical topology to improvise the noise effect further. The proposed TIA has been designed using Taiwan Semiconductor Manufacturing Company 45 nm complementary metal oxide semiconductor technology. Moreover, the thermal noise has been analyzed at −3 dB bandwidth to prove the reduction in thermal noise with increase in frequency for most of the devices used in the designed circuit.

Findings

The proposed differential TIA circuit was found to obtain the transimpedance gain of 50.1 dBO without applying any external bias current which is almost 8% improvised as compared to the conventional circuit. In addition to this, bandwidth achieved was 2.15 GHz along with only 38 W of power consumption, which is reasonably 100 times improvised in comparison of conventional circuit. Hence, the proposed differential TIA is suitable for the low power optical communications applications intended to work on low supply voltage.

Originality/value

The designed work is done by authors in university lab premises and is not copied from anywhere. To the best of the authors’ knowledge, it is 100% original.

Article
Publication date: 4 January 2023

Chang Hoon Yang and Na Hyun Cho

This paper aims to shed light on the linkage between research and development (R&D) networks and public funding presented in a given period by using network-based evaluation tools…

Abstract

Purpose

This paper aims to shed light on the linkage between research and development (R&D) networks and public funding presented in a given period by using network-based evaluation tools as a means of exploring the relational dimension in public projects designed to foster technology R&D activities.

Design/methodology/approach

This research uses co-occurrence network analysis of relevant public projects to assess how technological associations might occur within the R&D activities of given publicly funded projects as well as conducts correlation analysis to understand the extent to which linkages of R&D activity in technology fields are related to public expenditure.

Findings

Core technology fields, regarded as eligible to receive continued public funding, are critical for enhancing competitiveness and sustainable growth at the nationally strategic technology level. Thus, the relationship between R&D and the level of government funding for these fields is generally perceived as strong. However, a few technology fields, which did not actively form specific network relationships with other technology fields, are considered to exceptionally drive the largest government support. This trend indicates that the government-funded R&D should be designed and managed not only to curb the inefficiencies existing in the current funding programs but also to achieve the appropriateness for further technology development.

Research limitations/implications

Despite the comprehensive findings, this study has several limitations. First, it is difficult to control any confounding factors, such as the determinants and constraints of the government budget allocation and expenditure decisions over S&T areas, strategic frameworks for public investment and evolving policy landscapes in technology sectors, which lead to bias in the study results. Second, this study is based on a narrow, single-year data set of a specific field of projects supported by the Korean government’s R&D program. Therefore, the generalization of findings may be limited. The authors assumed that influences caused by confounding variables during the initial phase of the public funding schemes would not be significant, but they did not take into account possible factors that might arise coincident with the subsequent phase changes. As such, the issue of confounding variables needs to be carefully considered in research design to provide alternative explanations for the results that have been ruled out. The limitations of this study, therefore, could be overcome by comparing the outcome difference between subsidized and non-subsidized R&D projects or evaluating targeted funding schemes or tax incentives that support and promote various areas of R&D with sufficiently large, evidence-based data sets. Also, future research must identify and analyze the R&D activities concerning public support programs performed in other countries associated with strategic priorities to provide more profound insight into how they differ. Third, there are some drawbacks to using these principal investigators-provided classification codes, such as subjectivity, inaccuracy and non-representation. These limitations may be addressed by using content-based representations of the projects rather than using pre-defined codes. Finally, the role that government investment in R&D has played in developing new science and manufacturing technologies of materials and components through network relationships could be better examined using longitudinal analysis. Furthermore, the findings suggest the need for further research to integrate econometric models of performance outcomes such as input–output relations into the network analysis for analyzing the flow of resources and activities between R&D sectors in a national economy. Therefore, future research would be helpful in developing a methodological strategy that could analyze temporal trends in the identification of the effects of public funding on the performance of R&D activity and demand.

Practical implications

Public funding schemes and their intended R&D relationships still depend on a framework to generate the right circumstances for leading and promoting coordinated R&D activities while strengthening research capacity to enhance the competitiveness of technologies. Each technology field has a relatively important role in R&D development that should be effectively managed and supervised to accomplish its intended goals of R&D budgeting. Thus, when designing and managing R&D funding schemes and strategy-driven R&D relations, potential benefits and costs of using resources from each technology field should be defined and measured. In this regard, government-funded R&D activities should be designed to develop or accommodate a coordinated program evaluation, to be able to examine the extent to which public funding is achieving its objectives of fostering R&D networks, balancing the purpose of government funding against the needs of researchers and technology sectors. In this sense, the examination of public R&D relations provides a platform for discussion of relational network structures characterizing R&D activities, the strategic direction and priorities for budget allocation of the R&D projects. It also indicates the methodological basis for addressing the impact of public funding for R&D activities on the overall performance of technology fields.

Originality/value

The value of this work lies in a preliminary exploratory analysis that provides a high-level snapshot of the areas of metallurgy, polymers/chemistry/fibers and ceramics, funded by the Korean Government in 2016 to promote technological competitiveness by encouraging industries to maintain and expand their competencies.

Details

foresight, vol. 25 no. 5
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 18 October 2022

Nuha Rhaffor, Wei Keat Ang, Mohamed Fauzi Packeer Mohamed, Jagadheswaran Rajendran, Norlaili Mohd Noh, Mohd Tafir Mustaffa and Mohd Hendra Hairi

The purpose of this study is to show that due to the emergence of the Internet of Things (IoT) industry in recent years, the demand for the higher integration of wireless…

Abstract

Purpose

The purpose of this study is to show that due to the emergence of the Internet of Things (IoT) industry in recent years, the demand for the higher integration of wireless communication systems with a higher data rate of transmission capacity and lower power consumption has increased tremendously. The radio frequency power amplifier (PA) design is getting more challenging and crucial. A PA for a 2.45 GHz IoT application using 0.18 µm complementary metal oxide semiconductor (CMOS) technology is presented in this paper.

Design/methodology/approach

The design consists of two stages, the driver and output stage, where both use a single-stage common source transistor configuration. In view of performance, the PA can deliver more than 20 dB gain from 2.4 GHz to 2.5 GHz.

Findings

The maximum output power achieved by PA is 13.28 dBm. As the PA design is targeted for Bluetooth low energy (BLE) transmitter use, a minimum of 10 dBm output power should be achieved by PA to transmit the signal in BLE standard. The PA exhibits a constant output third-order interception point of 18 dBm before PA becomes saturated after 10 dBm output power. The PA shows a peak power added efficiency of 17.82% at the 13.24 dBm output power.

Originality/value

The PA design exhibits good linearity up to 10 dBm out the PA design exhibits good linearity up to 10 dBm output power without sacrificing efficiency. At the operating frequency of 2.45 GHz, the PA exhibits a stability k-factor, the value of more than 1; thus, the PA design is considered unconditional stable. Besides, the PA shows the s-parameters performance of –7.91 dB for S11, –11.07 dB for S22 and 21.5 dB for S21.

Details

Microelectronics International, vol. 40 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 April 2023

Lezhi Ye, Xuanjie Song and Chang Yue

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement…

84

Abstract

Purpose

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement stroke, position calibration error and low production efficiency in optical alignment, this paper aims to propose a new wafer magnetic alignment technology (MAT) which is based on tunnel magneto resistance effect. MAT can realize micro distance alignment and reduces the design and manufacturing difficulty of wafer bonding equipment.

Design/methodology/approach

The current methods and existing problems of wafer optical alignment are introduced, and the mechanism and realization process of wafer magnetic alignment are proposed. Micro magnetic column (MMC) marks are designed on the wafer by the semiconductor manufacturing process. The mathematical model of the space magnetic field of the MMC is established, and the magnetic field distribution of the MMC alignment is numerically simulated and visualized. The relationship between the alignment accuracy and the MMC diameter, MMC remanence, MMC thickness and sensor measurement height was studied.

Findings

The simulation analysis shows that the overlapping double MMCs can align the wafer with accuracy within 1 µm and can control the bonding distance within the micrometer range to improve the alignment efficiency.

Originality/value

Magnetic alignment technology provides a new idea for wafer bonding alignment, which is expected to improve the accuracy and efficiency of wafer bonding.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 22 July 2021

Ali Majeed and Esam Alkaldy

This study aims to replace current multi-layer and coplanar wire crossing methods in QCA technology to avoid fabrication difficulties caused by them.

Abstract

Purpose

This study aims to replace current multi-layer and coplanar wire crossing methods in QCA technology to avoid fabrication difficulties caused by them.

Design/methodology/approach

Quantum-dot cellular automata (QCA) is one of the newly emerging nanoelectronics technology tools that is proposed as a good replacement for complementary metal oxide semiconductor (CMOS) technology. This technology has many challenges, among them being component interconnection and signal routing. This paper will propose a new wire crossing method to enhance layout use in a single layer. The presented method depends on the central cell clock phase to enable two signals to cross over without interference. QCADesigner software is used to simulate a full adder circuit designed with the proposed wire crossing method to be used as a benchmark for further analysis of the presented wire crossing approach. QCAPro software is used for power dissipation analysis of the proposed adder.

Findings

A new cost function is presented in this paper to draw attention to the fabrication difficulties of the technology when designing QCA circuits. This function is applied to the selected benchmark circuit, and the results show good performance of the proposed method compared to others. The improvement is around 59, 33 and 75% compared to the best reported multi-layer wire crossing, coplanar wire crossing and logical crossing, respectively. The power dissipation analysis shows that the proposed method does not cause any extra power consumption in the circuit.

Originality/value

In this paper, a new approach is developed to bypass the wire crossing problem in the QCA technique.

Details

Circuit World, vol. 49 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 February 2022

Yavar Safaei Mehrabani, Mojtaba Maleknejad, Danial Rostami and HamidReza Uoosefian

Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and…

44

Abstract

Purpose

Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and high-performance full adder cell.

Design/methodology/approach

Approximate computing is a novel paradigm that is used to design low-power and high-performance circuits. In this paper, a novel 1-bit approximate full adder cell is presented using the combination of complementary metal-oxide-semiconductor, transmission gate and pass transistor logic styles.

Findings

Simulation results confirm the superiority of the proposed design in terms of power consumption and power–delay product (PDP) criteria compared to state-of-the-art circuits. Also, the proposed full adder cell is applied in an 8-bit ripple carry adder to accomplish image processing applications including image blending, motion detection and edge detection. The results confirm that the proposed cell has premier compromise and outperforms its counterparts.

Originality/value

The proposed cell consists of only 11 transistors and decreases the switching activity remarkably. Therefore, it is a low-power and low-PDP cell.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Access

Year

Last 12 months (389)

Content type

Article (389)
1 – 10 of 389