Search results

21 – 30 of over 1000
Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1131

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 January 2010

J.W. Peterson, B.T. Murray and G.F. Carey

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a…

Abstract

Purpose

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a stabilizing concentration gradient and small diffusivity.

Design/methodology/approach

A fully‐coupled stabilized finite element scheme and adaptive mesh refinement (AMR) methodology are introduced to solve the resulting coupled multiphysics application and resolve fine scale solution features. The code is written on top of the open source finite element library LibMesh, and is suitable for parallel, high‐performance simulations of large‐scale problems.

Findings

The stabilized adaptive finite element scheme is used to compute steady and unsteady onset of convection in a generalized Horton‐Rogers‐Lapwood problem in both two and three‐dimensional domains. A detailed study confirming the applicability of AMR in obtaining the predicted dependence of solutal Nusselt number on Lewis number is given. A semi‐permeable barrier version of the generalized HRL problem is also studied and is believed to present an interesting benchmark for AMR codes owing to the different boundary and internal layers present in the problem. Finally, some representative adaptive results in a complex 3D heated‐pipe geometry are presented.

Originality/value

This work demonstrates the feasibility of stabilized, adaptive finite element schemes for computing simple double‐diffusive flow models, and it represents an easily‐generalizable starting point for more complex calculations since it is based on a highly‐general finite element library. The complementary nature of h‐adaptivity and stabilized finite element techniques for this class of problem is demonstrated using particularly simple error indicators and stabilization parameters. Finally, an interesting double‐diffusive convection benchmark problem having a semi‐permeable barrier is suggested.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2006

Hong Zheng, Chixing Zhou, Wei Yu and Hongbin Zhang

Numerical simulation of the high-speed fiber spinning process was carried out based on a two-phase microstructure model. Calculation predicts not only the variation of parameters…

Abstract

Numerical simulation of the high-speed fiber spinning process was carried out based on a two-phase microstructure model. Calculation predicts not only the variation of parameters along the spinline, but also the radially distribution of flow field variables, such as temperature, crystallinity and molecular structure. Considering the combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymer under various spinning conditions. The structural change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Moreover, a three-dimensional (3D) simulation approach was also established to predict the complex fiber shape given the spinneret geometry under the actual processing conditions. The influences of surface tension and the take-up velocity on the final fiber shape are predicted numerically.

Details

Research Journal of Textile and Apparel, vol. 10 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 April 1991

Tatsumi ISHIZUKA

3D bulk image effects in high‐NA lens lithography are studied through 3D exposure and development simulations by applying a Mack model to the 3D exposure process.

Abstract

3D bulk image effects in high‐NA lens lithography are studied through 3D exposure and development simulations by applying a Mack model to the 3D exposure process.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 10 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1205

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Junaid Godil and Ali Kamran

The capability to predict and evaluate the motor pressure during each phase by means of a numerical analysis can significantly increase the efficiency of the preliminary design…

Abstract

Purpose

The capability to predict and evaluate the motor pressure during each phase by means of a numerical analysis can significantly increase the efficiency of the preliminary design process with a reduction of both the motor development and operational costs. This paper aims to perform numerical simulation to analyze the ignition transient in solid rocket motor by solving Euler equation coupled with some semi-empirical correlations. These relations take into account the main phenomena affecting the ignition transient. Coupling relationships include the heat transfer of the gas to the propellant and erosive burning rate relationship.

Design/methodology/approach

The current research effort divides motor into series of control volumes along the port axis, and the variation of port area, burning surface and burning rate along the port are taken into account. A set of governing equations are then solved using explicit, time-dependent, predictor-corrector finite difference method. The numerical model helps to capture and embed shock wave associated with igniter flow within the solution. Second-order artificial viscosity dampens out the numerical oscillations due to sharp gradient within the flow field. The developed computer code predicts the start-up characteristics of motor. The study also provides comparison of simulation results with in-house experimental motor.

Findings

Simulations are performed with and without erosive burning to demonstrate that the flow model is a good physical approximation of motor. Numerical results calculated by this model without erosive burning are not in good agreement with experimental results. This minor discrepancy has motivated the inclusion of erosive burning in numerical model. The simulated results are then compared with the experimental data for head-end and rear-end pressure. The agreement between simulation and experiment is remarkable. In summary, major finding of this study is that unsteady quasi-one-dimensional gas dynamic model can capture the flow field in the motor during ignition transient effectively.

Research limitations/implications

Unsteady quasi-one-dimensional gas dynamic model can capture the flow field in the motor during ignition transient effectively. However, in systems where two- and three-dimensional effects are pre-dominant, one would require to develop a more elaborate, multi-dimensional model which will allow for further understanding of the flow behavior and eventually lead to modeling of rocket motors with more complex geometries.

Practical implications

The close agreement between experimental and simulation results can be considered as forced to some degree, because the general mathematical model of erosive burning contains a free variable erosive burning exponent. However, in future, this variable can be established a priori by erosive burning tests.

Originality/value

The solid propellant ignition process consists of series of rapid events and must be completed in a fraction of a second. An understanding of the dynamics of ignition has become increasingly vital with the development of larger and more sophisticated solid propellant rocket motors. This research effort provides the simulation framework to predict and evaluate the motor pressure during each phase by means of a numerical analysis, thus significantly increasing the efficiency of the preliminary design process with a reduction of both the motor development and operational costs.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 1996

P.Y. Tzeng and J.H. Sheu

This paper describes a study concerning the numerical simulation of asonic helium jet through a transverse nozzle in a flat plate exhaustingnormally into a supersonic air flow…

Abstract

This paper describes a study concerning the numerical simulation of a sonic helium jet through a transverse nozzle in a flat plate exhausting normally into a supersonic air flow. Three‐dimensional Reynolds‐averaged Navier—Stokes equations coupled with the modified Baldwin‐Lomax algebraic turbulence model and relevant species equations are solved by using a finite‐volume upwind scheme. In this approach, Roe’s flux function, explicit multi‐stage integration and multi‐block procedure are applied to achieve the steady state solution efficiently. The Roe’s flux function is modified to suit the simulation of helium‐air mixing. The comparison between two‐dimensional calculated results with experimental data of surface pressure shows good agreement. The results of three‐dimensional computations for square, circular and rectangular jets are presented, and the essential flow features including induced shocks, upstream separations, and downstream primary and secondary vortices are adequately simulated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1994

A.J.C. Stekelenburg, T.H.J.J. Van der Hagen and H.E.A. Van Den Akker

The cross‐correlation flow measurement technique, applied formeasuring the coolant flow rate in a nuclear reactor, was calibrated with theuse of numerical simulations of turbulent…

Abstract

The cross‐correlation flow measurement technique, applied for measuring the coolant flow rate in a nuclear reactor, was calibrated with the use of numerical simulations of turbulent flow. The three‐dimensional domain was collapsed into two dimensions. With a two‐dimensional calculation of steady‐state flow with transient thermal characteristics the response of thermocouples to a temperature variation was calculated. By cross‐correlating the calculated thermocouple responses, the link between total flow rate and measured transit times was made. The reliability of the calibration was estimated at ±4.6%. In addition, a measured velocity profile effect was successfully predicted.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2005

C.C. Pain, J.L.M.A. Gomes, Eaton, C.R.E. de Oliveira and A.J.H. Goddard

To present dynamical analysis of axisymmetric and three‐dimensional (3D) simulations of a nuclear fluidized bed reactor. Also to determine the root cause of reactor power…

Abstract

Purpose

To present dynamical analysis of axisymmetric and three‐dimensional (3D) simulations of a nuclear fluidized bed reactor. Also to determine the root cause of reactor power fluctuations.

Design/methodology/approach

We have used a coupled neutron radiation (in full phase space) and high resolution multiphase gas‐solid Eulerian‐Eulerian model.

Findings

The reactor can take over 5 min after start up to establish a quasi‐steady‐state and the mechanism for the long term oscillations of power have been established as a heat loss/generation mechanism. There is a clear need to parameterize the temperature of the reactor and, therefore, its power output for a given fissile mass or reactivity. The fission‐power fluctuates by an order of magnitude with a frequency of 0.5‐2 Hz. However, the thermal power output from gases is fairly steady.

Research limitation/implications

The applications demonstrate that a simple surrogate of a complex model of a nuclear fluidised bed can have a predictive ability and has similar statistics to the more complex model.

Practical implications

This work can be used to analyze chaotic systems and also how the power is sensitive to fluctuations in key regions of the reactor.

Originality/value

The work presents the first 3D model of a nuclear fluidised bed reactor and demonstrates the value of numerical methods for modelling new and existing nuclear reactors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2016

Babak Lotfi, Bengt Sunden and Qiu-Wang Wang

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in…

416

Abstract

Purpose

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver.

Design/methodology/approach

A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region.

Findings

Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs.

Originality/value

This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.

21 – 30 of over 1000