Search results

1 – 10 of over 13000
Article
Publication date: 1 March 1944

J.L. Beilschmidt

A FEATURE of many of the light alloys now in common use is that the stress and strain curve often does not evidence any well defined region in which the elastic strain becomes…

Abstract

A FEATURE of many of the light alloys now in common use is that the stress and strain curve often does not evidence any well defined region in which the elastic strain becomes plastic strain, and a linear portion of the diagram from the origin, which in the case of so many metals represents a region of proportionality, is sometimes almost non‐existent, the diagram being curved right from the origin so that it is not possible to define any region or limit of proportionality, and the proof stress; by standard definition, has accordingly a relatively low value compared with the ultimate tensile stress of the alloy concerned. (Fig. 1).

Details

Aircraft Engineering and Aerospace Technology, vol. 16 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 2007

L.Q. Ma, X.Q. Yuan, S.H. Jiao, Z.Y. Liu, D. Wu and G.D. Wang

The dynamic recrystallization (DRX) and flow stress of Nb‐bearing steels were investigated by means of isothermal single compression testing at temperatures of 850‐105° and at…

Abstract

The dynamic recrystallization (DRX) and flow stress of Nb‐bearing steels were investigated by means of isothermal single compression testing at temperatures of 850‐105° and at constant strain rate from 0.1 to 20s‐1 using a Gleeble 3800 thermo‐mechanical simulator in order to model the DRX processes and predict the flow stress during plate rolling. On the basis of the measured flow stress, a new model of DRX kinetics was proposed to calculate the volume fraction of dynamically recrystallized grains, which was a function of processing parameters such as deformation temperature, strain, strain rate, the initial austenite grain size and Nb content. The effect of deformation conditions was quantified by the Zener‐Hollomon parameter, in which the activation energy of deformation was expressed as a power function of Nb content. The critical strain was determined by using the method proposed by Jonas and co‐workers. It is shown that the ratio of the critical strain to the peak strain decreases with increasing Nb content, from which an empirical equation was developed. In addition, the influence of Nb content and deformation conditions on the steady state grain size was determined by fitting the experimental results to a linear relationship. Finally, the flow stress of Nb bearing steels was accurately predicted using a one‐internal‐variable evolution equation by taking Nb content as a parameter and including the influence of DRX. The comparison between the experimental and theoretical results confirmed that the modeling had a good accuracy to predict flow stresses during hot deformation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 1956

A.E. Johnson

TURBINE disks of jet propulsion units operate under conditions of considerable complexity for which steam turbine practice and experience afford little assistance in matters of…

Abstract

TURBINE disks of jet propulsion units operate under conditions of considerable complexity for which steam turbine practice and experience afford little assistance in matters of calculation and design.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 7 November 2016

Babak Lotfi, Bengt Sunden and Qiu-Wang Wang

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in…

416

Abstract

Purpose

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver.

Design/methodology/approach

A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region.

Findings

Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs.

Originality/value

This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.

Article
Publication date: 18 April 2016

David Impens and R.J. Urbanic

The purpose of this paper is to characterize mechanical properties (tensile, compressive and flexural) for the three-dimensional printing (3DP) process, using various common…

Abstract

Purpose

The purpose of this paper is to characterize mechanical properties (tensile, compressive and flexural) for the three-dimensional printing (3DP) process, using various common recommended infiltrate materials and post-processing conditions.

Design/methodology/approach

A literature review is conducted to assess the information available related to the mechanical properties, as well as the experimental methodologies which have been used when investigating the 3D printing process characteristics. Test samples are designed, and a methodology to measure infiltrate depths is presented. A full factorial experiment is conducted to collect the tensile, compressive and bending forces for a set of infiltrates and build orientations. The impact of the infiltrate type and depth with respect to the observed strength characteristics is evaluated.

Findings

For most brittle materials, the ultimate compression strength is much larger than the ultimate tensile strength, which is shown in this work. Unique stressstrain curves are generated from the infiltrate and build orientation conditions; however, the compressive strength trends are more consistent in behavior compared to the tensile and flexural results. This comprehensive study shows that infiltrates can significantly improve the mechanical characteristics, but performance degradation can also occur, which occurred with the Epsom salts infiltrates.

Research limitations/implications

More experimental research needs to be performed to develop predictive models for design and fabrication optimization. The material-infiltrate performance characteristics vary per build orientation; hence, experimental testing should be performed on intermediate angles, and a double angle experiment set should also be conducted. By conducting multiple test scenarios, it is now understood that this base material-infiltrate combination does not react similar to other materials, and any performance characteristics cannot be easily predicted from just one study.

Practical implications

These results provide a foundation for a process design and post-processing configuration database, and downstream design and optimization models. This research illustrates that there is no “best” solution when considering material costs, processing options, safety issues and strength considerations. This research also shows that specific testing is required for new machine–material–infiltrate combinations to calibrate a performance model.

Originality/value

There is limited published data with respect to the strength characteristics that can be achieved using the 3DP process. No published data with respect to stressstrain curves are available. This research presents tensile, compressive and flexural strength and strain behaviors for a wide variety of infiltrates, and post-processing conditions. A simple, unique process is presented to measure infiltrate depths. The observed behaviors are non-linear and unpredictable.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 July 2020

Rachit Sharma

This paper presents the effects of replacing fine aggregate (FA) with waste foundry sand (WFS) in natural aggregate and construction waste aggregate concrete specimens without and

Abstract

Purpose

This paper presents the effects of replacing fine aggregate (FA) with waste foundry sand (WFS) in natural aggregate and construction waste aggregate concrete specimens without and with superplasticizer (SP), silica fume (SF) and fiber (F) to solve the disposal problems of various wastes along with saving the environment. This study aims to investigate the effect of construction waste, WFS along with additives on the stress-strain behavior and development of compressive strength with age.

Design/methodology/approach

The various concrete specimen were prepared in mix proportion of 1: 2: 4 (cement (C): sand: coarse aggregate). The water-cement ratio of 0.5 (decreased by 10% for samples containing SP) to grading 1: 2: 4 under air-dry condition was adopted in the preparation of concrete specimens. The compressive strength of various concrete specimen were noticed for 3, 7 and 28 days by applying load through universal testing machine.

Findings

Upon adding construction and demolition waste aggregates, the compressive strength of concrete after 28 days was comparable to that of the control concrete specimen. An enhancement in the value of compressive strength is perceived when FA is replaced with WFS to the extent of 10%, 20% and 30%. If both construction and demolition waste aggregate and WFS replacing FA are used, the compressive strength increases. When FA is interchanged with WFS in natural aggregate or construction demolition waste aggregate concrete including usage of SF or F, the compressive strength improves significantly. Further, when construction and demolition waste aggregate and WFS replacing FA including SP are used, the compressive strength improves marginally compared to that of control specimen. The rate of strength development with age is observed to follow similar trend as in control concrete specimen. Therefore, construction and demolition waste and or WFS can be used effectively in concrete confirming an improvement in strength.

Originality/value

The utilization of these wastes in concrete will resolve the problem of their disposal and save the environment.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 January 2023

Shaoyi Liu, Songjie Yao, Song Xue, Benben Wang, Hui Jin, Chenghui Pan, Yinwei Zhang, Yijiang Zhou, Rui Zeng, Lihao Ping, Zhixian Min, Daxing Zhang and Congsi Wang

Surface mount technology (SMT) is widely used and plays an important role in electronic equipment. The purpose of this paper is to reveal the effects of interface cracks on the…

Abstract

Purpose

Surface mount technology (SMT) is widely used and plays an important role in electronic equipment. The purpose of this paper is to reveal the effects of interface cracks on the fatigue life of SMT solder joint under service load and to provide some valuable reference information for improving service reliability of SMT packages.

Design/methodology/approach

A 3D geometric model of SMT package is established. The mechanical properties of SMT solder joint under thermal cycling load and random vibration load were solved by 3D finite element analysis. The fatigue life of SMT solder joint under different loads can be calculated by using the modified Coffin–Manson model and high-cycle fatigue model.

Findings

The results revealed that cracks at different locations and propagation directions have different effect on the fatigue life of the SMT solder joint. From the location of the cracks, Crack 1 has the most significant impact on the thermal fatigue life of the solder joint. Under the same thermal cycling conditions, its life has decreased by 46.98%, followed by Crack 2, Crack 4 and Crack 3. On the other hand, under the same random vibration load, Crack 4 has the most significant impact on the solder joint fatigue life, reducing its life by 81.39%, followed by Crack 1, Crack 3 and Crack 2. From the crack propagation direction, with the increase of crack depth, the thermal fatigue life of the SMT solder joint decreases sharply at first and then continues to decline almost linearly. The random vibration fatigue life of the solder joint decreases continuously with the increase of crack depth. From the crack depth of 0.01 mm to 0.05 mm, the random vibration fatigue life decreases by 86.75%. When the crack width increases, the thermal and random vibration fatigue life of the solder joint decreases almost linearly.

Originality/value

This paper investigates the effects of interface cracks on the fatigue life and provides useful information on the reliability of SMT packages.

Details

Microelectronics International, vol. 40 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 July 2005

Woo‐Sik Kim, Nguyen Minh Tam and Du‐Hwoe Jung

This paper describes the effect of factors on the strength characteristics of cement treated clay from laboratory tests performed on cement mixed clay specimens. It is considered…

Abstract

This paper describes the effect of factors on the strength characteristics of cement treated clay from laboratory tests performed on cement mixed clay specimens. It is considered that several factors such as soil type, sample preparing method, quantity of binder, curing time, etc. can have an effect on strength characteristics of cement stabilized clay. A series of unconfined compression tests have been performed on samples prepared with different conditions. The results indicated that soil type, mixing method, curing time, dry weight ratio of cement to clay (Aw), and water‐clay to cement (wc/c) ratio were main factors which can have an influence on unconfined compressive strength, modulus of elasticity, and failure strain of cement stabilized clay. Unconfined compressive strength of soil‐cement samples prepared from dry mixing method was higher than those prepared from wet mixing method.

Details

Journal of Engineering, Design and Technology, vol. 3 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 January 1939

F.R. Shanley

MOST of the structural analysis problems that have resulted from the use of “thin‐walled” construction seem to fall into two general classes: Stress distribution and buckling

1118

Abstract

MOST of the structural analysis problems that have resulted from the use of “thin‐walled” construction seem to fall into two general classes: Stress distribution and buckling. Even these classes cannot be entirely separated, as the stress distribution can be greatly affected by buckling phenomena. A thorough understanding of the general principles of buckling (or structural instability) is therefore essential for efficient and safe design of modern aircraft structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 18 February 2019

Mohammed S. Gumaan, Rizk Mostafa Shalaby, Mustafa Kamal Mohammed Yousef, Esmail A.M. Ali and E. E. Abdel-Hady

This study aims to investigate the structural, mechanical, thermal and electrical properties of tin–silver–nickel (Sn-Ag-Ni) melt-spun solder alloys. So, it aims to improve the…

Abstract

Purpose

This study aims to investigate the structural, mechanical, thermal and electrical properties of tin–silver–nickel (Sn-Ag-Ni) melt-spun solder alloys. So, it aims to improve the mechanical properties of the eutectic tin–silver (Sn-Ag) such as tensile strength, plasticity and creep resistance by adding different concentrations of Ni content.

Design/methodology/approach

Ternary melt-spun Sn-Ag-Ni alloys were investigated using x-ray diffractions, scanning electron microscope, dynamic resonance technique (DRT), Instron machine, Vickers hardness tester and differential scanning calorimetry.

Findings

The results revealed that the Ni additions 0.1, 0.3, 0.5, 0.7, 1, 3 and 5 Wt.% to the eutectic Sn-Ag melt-spun solder were added. The “0.3wt.%” of Ni was significantly improved its mechanical properties to efficiently serve under high strain rate applications. Moreover, the uniform distribution of Ag3Sn intermetallic compound with “0.3wt.%” of Ni offered the potential benefits, such as high strength, good plasticity consequently and good mechanical performance through a lack of dislocations and microvoids. The tensile results showed improvement in 17.63 per cent tensile strength (26 MPa), 21 per cent toughness (1001 J/m3), 22.83 per cent critical shear stress (25.074 MPa) and 11 per cent thermal diffusivity (2.065 × 10−7 m2/s) when compared with the tensile strength (21.416 MPa), toughness (790 J/m3), critical shear stress (19.348 MPa) and thermal diffusivity (1.487 × 10−7 m2/s) of the eutectic Sn-Ag. Slight increments have been shown for the melting temperature of Sn96.2-Ag3.5-Ni0.3 (222.62°C) and electrical resistivity to (1.612 × 10−7 Ω.m). It can be said that the eutectic Sn-Ag solder alloy has been mechanically improved with “0.3wt.%” of Ni to become a suitable alloy for high strain rate applications. The dislocation movement deformation mechanism (n = 4.5) without Ni additions changed to grain boundary sliding deformation mechanism (n = 3.5) with Ni additions. On the other hand, the elastic modulus, creep rate and strain rate sensitivity with “0.3wt.%” of Ni have been decreased. The optimum Ni-doped concentration is “0.7wt.%” of Ni in terms of refined microstructure, electrical resistivity, Young’s Modulus, bulk modulus, shear modulus, thermal diffusivity, maximum shear stress, tensile strength and average creep rate.

Originality/value

This study provides nickel effects on the structural of the eutectic Sn-Ag rapidly solidified by melt-spinning technique. In this paper, the authors have compared the elastic modulus of the melt-spun compositions which has been resulted from the tensile strength tester with these results from the DRT for the first time to best of the authors’ knowledge. This paper presents new improvements in mechanical and electrical performance.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 13000