Search results

1 – 10 of 412
Article
Publication date: 20 January 2023

Nishchay Tiwari, Pawel Flaszynski, Thanushree Suresh and Oskar Szulc

The purpose of this paper is to investigate and compare the effects of rod and vane-type vortex generators for wind turbine applications. In large wind turbine rotors, an attached…

Abstract

Purpose

The purpose of this paper is to investigate and compare the effects of rod and vane-type vortex generators for wind turbine applications. In large wind turbine rotors, an attached flow at all sections along the span direction is difficult to achieve which leads to an increase in aerodynamic losses, noise generation, and fatigue stress. Therefore, flow control strategies such as vortex generators (VGs) are beneficial to improve performance.

Design/methodology/approach

The benefits of the application of rod-type vortex generators (RVGs) to control flow separation on a wind turbine airfoil are assessed numerically using computational fluid dynamics (CFD). The validation of the computational model is conducted against the experimental data available for the DU96-W-180 wind turbine airfoil equipped with 44 RVGs. In addition, a revised wind tunnel angle of attack (AoA) calibration procedure (based on CFD) is proposed that is applicable for separated flows. A comparison of the RVGs to the conventional vane-type vortex generators (VVGs) is presented for inflow velocity of 30 m/s and AoA leading to significant flow separation. A parametric evaluation of the geometric characteristics of both types of VGs is conducted to quantify the generated streamwise vortices.

Findings

The comparison of the induced flow structures and aerodynamic efficiency enhancements proves that RVGs may be used as an alternative to the more conventional VVGs applied on wind turbine blades for boundary layer separation control.

Originality/value

A new type of VG (rod) has been investigated and compared against conventional VG (vanes) for wind turbine applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 October 2020

Rawad Himo, Charbel Bou-Mosleh and Charbel Habchi

Flow separation on wings, blades and vehicles can be delayed or even suppressed by the use of vortex generators (VG). Numerous studies, documented in the literature, extensively…

Abstract

Purpose

Flow separation on wings, blades and vehicles can be delayed or even suppressed by the use of vortex generators (VG). Numerous studies, documented in the literature, extensively describe the performance of triangular and rectangular VG winglets. This paper aims to focus on the use of non-conventional VG shapes, more specifically an array of trapezoildal-perforated VG tabs.

Design/methodology/approach

In this study, computational fluid dynamic simulations are performed on an inline array of trapezoidal VG with various dimensions and inclination angles, in addition to considering perforations in the VG centers. The methodology of the present numerical study is validated with experimental data from the literature.

Findings

The performance and the associated flow structures of these tested non-conventional VG are compared to classical triangular winglets. For the proposed non-conventional trapezoidal VG, at the onset of stall, a 21% increase of lift over drag on the airfoil is observed. The trapezoidal VG enhancement is also witnessed during stall where the lift over drag ratio is increased by 120% for the airfoil and by 10% with respect to the triangular winglets documented in the literature.

Originality/value

The originality of this paper is the use of non-conventional vortex generator shape to enhance lift over drag coefficient using three-dimensional numerical simulations.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 July 2019

Safeer Hussain, Jian Liu, Lei Wang and Bengt Ake Sunden

The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs).

Abstract

Purpose

The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs).

Design/methodology/approach

This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers.

Findings

The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins.

Originality/value

VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Javier Martinez Suarez, Pawel Flaszynski and Piotr Doerffer

The purpose of this paper is to describe numerical investigations focused on the reduction of separation and the aerodynamic enhancement of wind turbine blades by a rod vortex

Abstract

Purpose

The purpose of this paper is to describe numerical investigations focused on the reduction of separation and the aerodynamic enhancement of wind turbine blades by a rod vortex generator (RVG).

Design/methodology/approach

A flow modelling approach through the use of a Reynolds-averaged Navier–Stokes solver is used. The numerical tools are validated with experimental data for the NREL Phase VI rotor and the S809 aerofoil. The effect of rod vortex generator’s (RVG) configuration on aerofoil aerodynamic performance, flow structure and separation is analysed. RVGs’ chordwise locations and spanwise distance are considered, and the optimum configuration of the RVG is applied to the wind turbine rotor.

Findings

Results show that streamwise vortices created by RVGs lead to modification of flow structure in boundary layer. As a result, the implementation of RVGs on aerofoil has proven to decrease the flow separation and enhance the aerodynamic performance of aerofoils. The effect on flow structure and aerodynamic performance has shown to be dependent on dimensions, chordwise location and spanwise distribution of rods. The implementation of devices with the optimum configuration has shown to increase aerodynamic performance and to significantly reduce separation for selected conditions. Application of rods to the wind turbine rotor has proven to avoid the spanwise penetration of flow separation where applied, leading to reduction of flow separation and to aerodynamic enhancement.

Originality/value

The proposed RVGs have shown potential to enhance the aerodynamic performance of wind turbine rotors and profiles, making devices an alternative solution to the classical vortex generators for wind turbine applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2004

G. Comini, G. Croce and C. Nonino

Most compact heat exchangers and heat dissipating components rely on convection enhancement mechanisms that reduce the continuous growth of boundary layers. Usually surface…

Abstract

Most compact heat exchangers and heat dissipating components rely on convection enhancement mechanisms that reduce the continuous growth of boundary layers. Usually surface irregularities, in the form of interruptions and/or vortex generators, are introduced in the flow passages. The resulting geometric configurations are periodic in space and, after a short distance from the entrance, induce velocity and thermal fields that repeat themselves from module to module. The numerical models presented here consider the space‐periodicity and allow flows that are stationary at sub‐critical values of the Reynolds number, but become time‐periodic, or quasi periodic, above the critical value of the Reynolds number. Space discretizations are achieved by an equal order finite element procedure based on a projection algorithm. Two‐dimensional schematizations are employed to analyze the effects of surface interruptions and transverse vortex generators, while three‐dimensional schematizations are employed for longitudinal vortex generators.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2018

Tomasz Kwiatkowski, Pawel Flaszyński and Jerzy Zoltak

The simulations of grid-resolved rod vortex generators (RVGs) require high computational cost and time. Additionally, the computational mesh topology must be adjusted to rods…

Abstract

Purpose

The simulations of grid-resolved rod vortex generators (RVGs) require high computational cost and time. Additionally, the computational mesh topology must be adjusted to rods geometries. The purpose of this study is to propose the new source term model for RVG.

Design/methodology/approach

The model was proposed by modification of Bender, Anderson, Yagle (BAY) model used to predict flows around different type of vortex generators (VGs) – vanes. Original BAY model was built on lifting line theory. The proposed model was implemented in ANSYS Fluent by means of the user-defined function technique. Additional momentum and energy sources are imposed to transport equations.

Findings

The computational results of source term model were validated against experimental data and numerical simulation results for grid-resolved rod. It was shown that modified BAY model can be successfully used for RVG in complex cases. An example of BAY model application for RVG on transonic V2C airfoil with strongly oscillating shock waves is presented. Aerodynamic performance predicted numerically by means of both approaches (grid resolved RVG and modeled) is in good agreement, what indicates application opportunity of the proposed model to complex cases.

Practical implications

Modified BAY model can be used to simulate the influence of RVGs in complex real cases. It allows for time/cost reduction if the location or distribution of RVG has to be optimized on a profile, wing or in the channel.

Originality/value

In the paper, the new modification of BAY model was proposed to simulate RVGs. The presented results are innovative because of original approach to model RVGs.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 April 2022

Jeena Joseph, Sathyabhama A. and Surya Sridhar

With aims to increase the aerodynamic efficiency of aerodynamic surfaces, study on flow control over these surfaces has gained importance. With the addition of flow control…

Abstract

Purpose

With aims to increase the aerodynamic efficiency of aerodynamic surfaces, study on flow control over these surfaces has gained importance. With the addition of flow control devices such as synthetic jets and vortex generators, the flow characteristics can be modified over the surface and, at the same time, enhance the performance of the body. One such flow control device is the tubercle. Inspired by the humpback whale’s flippers, these leading-edge serrations have improved the aerodynamic efficiency and the lift characteristics of airfoils and wings. This paper aims to discusses in detail the flow physics associated with tubercles and their effect on swept wings.

Design/methodology/approach

This study involves a series of experimental and numerical analyses that have been performed on four different wing configurations, with four different sweep angles corresponding to 0°, 10°, 20° and 30° at a low Reynolds number corresponding to Rec=100,000.

Findings

Results indicate that the effect of tubercles diminishes with an increase in wing sweep. A significant performance enhancement was observed in the stall and post-stall regions. The addition of tubercles led to a smooth post-stall lift characteristic compared to the sudden loss in the lift with regular wings. Among the four different wings under observation, it was found that tubercles were most effective on the 0° configuration (no sweep), showing a 10.8% increment in maximum lift and a 38.5% increase in the average lift generated in the post-stall region. Tubercles were least effective on 30° configuration. Furthermore, with an increase in wing sweep, co-rotating vortices were distinctly observed rather than counter-rotating vortices.

Originality/value

While extensive numerical and experimental studies have been performed on straight wings with tubercles, studies on the tubercle effect on swept wings at low Reynolds number are minimal and mainly experimental in nature. This study uses numerical methods to explore the complex flow physics associated with tubercles and their implementation on swept wings. This study can be used as an introductory study to implement passive flow control devices in the low Reynolds number regime.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 January 2021

Faezeh Nejati Barzoki, Ghanbar Ali Sheikhzadeh, Morteza Khoshvaght Aliabadi and Ali Akbar Abbasian Arani

The purpose of this paper is to investigate thermohydraulic characteristics of turbulent flow of water (4,000 = Re = 10,000) in a rectangular channel equipped with perforated…

Abstract

Purpose

The purpose of this paper is to investigate thermohydraulic characteristics of turbulent flow of water (4,000 = Re = 10,000) in a rectangular channel equipped with perforated chevron plat-fin (PCPF) with different vortex generators (VGs) shapes.

Design/methodology/approach

First, three general shapes of VGs including rectangular, triangular and half circle, are compared to each other. Then, the various shapes of rectangular VGs, (horizontal, vertical and square) and triangular VGs, (forward, backward and symmetric) are evaluated. To comprehensively evaluate the thermohydraulic performance of the PCPF with various VG shapes, the relationship between the Colburn factor and the friction factor (j/f) is presented, then a performance index (η) is applied using these factors.

Findings

Results show that the enhanced models of the PCPF, which are equipped with VGs, have higher values of j/f ratio and η as compared with the reference model (R). Further, the half-circle VG with the lowest pressure drop values (about 2.4% and 4.9%, averagely as compared with the S and ST vortex generators), shows the highest thermohydraulic performance among the proposed shapes. The maximum of performance index of 1.14 is found for the HC vortex generator at Re = 4,000. It is also found that the square and forward triangular VGs, have the best thermohydraulic performance among the rectangular and triangular VGs respectively and the highest performance index of 1.13 and 1.11 are reported for these VGs.

Originality/value

The thermohydraulic performance of the PCPF with different vortex generators VGs shapes have been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Fernando Tejero Embuena, Piotr Doerffer, Pawel Flaszynski and Oskar Szulc

Helicopter rotor blades are usually aerodynamically limited by the severe conditions present in every revolution: strong shock wave boundary layer interaction on the advancing…

Abstract

Purpose

Helicopter rotor blades are usually aerodynamically limited by the severe conditions present in every revolution: strong shock wave boundary layer interaction on the advancing side and dynamic stall on the retreating side. Therefore, different flow control strategies might be applied to improve the aerodynamic performance.

Design/methodology/approach

The present research is focussed on the application of passive rod vortex generators (RVGs) to control the flow separation induced by strong shock waves on helicopter rotor blades. The formation and development in time of the streamwise vortices are also investigated for a channel flow.

Findings

The proposed RVGs are able to generate streamwise vortices as strong as the well-known air-jet vortex generators. It has been demonstrated a faster vortex formation for the rod type. Therefore, this flow control device is preferred for applications in which a quick vortex formation is required. Besides, RVGs were implemented on helicopters rotor blades improving their aerodynamic performance (ratio thrust/power consumption).

Originality/value

A new type of vortex generator (rod) has been investigated in several configurations (channel flow and rotor blades).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2022

Mani Sekaran Santhanakrishnan, Timothy Tilford and Christopher Bailey

This study aims to provide an insight into the relationship between design parameters and thermal performance of plate fin heat sinks (PFHSs) incorporating longitudinal vortex

Abstract

Purpose

This study aims to provide an insight into the relationship between design parameters and thermal performance of plate fin heat sinks (PFHSs) incorporating longitudinal vortex generators (VGs) inside a PFHS channel.

Design/methodology/approach

A computational fluid dynamics model of a delta winglet pair VG mounted inside a PFHS geometry is detailed, and the model is validated by comparison with experimental data. The validated model is used to perform a virtual design of experiments study of the heat sink with bottom plate and vertical plate mounted VGs. Data from this study is used to regress a response surface enabling the influence of each of the assessed design variables on thermal performance and flow resistance to be determined.

Findings

The results of this study show that the thermal hydraulic performances of a PFHS with bottom plate mounted VG and vertical plate fin mounted VG are, respectively, 1.12 and 1.17 times higher than the baseline PFHS. Further, the performance variation of the heat sink with VG, relative to delta winglet’s arrangement (common flow up and common flow down), trailing edge gap length and Reynolds number were also evaluated and reported.

Originality/value

For the first time, performance characteristics of delta winglet VGs mounted inside the PFHS are evaluated against different design variables and a polynomial regression model is developed. The developed regression model and computed results can be used to design high performance PFHSs mounted with delta winglet VGs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 412