Search results

1 – 10 of 21
Article
Publication date: 15 December 2021

Fuminobu Ozaki, Ying Liu and Kai Ye

The purpose of this study is to clarify both tensile and shear strength for self-drilling screws, which are manufactured from high-strength, martensitic-stainless and austenitic…

Abstract

Purpose

The purpose of this study is to clarify both tensile and shear strength for self-drilling screws, which are manufactured from high-strength, martensitic-stainless and austenitic stainless-steel bars, and the load-bearing capacity of single overlapped screwed connections using steel sheets and self-drilling screws at elevated temperatures.

Design/methodology/approach

Tensile/shear loading tests for the self-drilling screw were conducted to obtain basic information on the tensile and shear strengths at elevated temperatures and examine the relationships between both. Shear loading tests for the screwed connections at elevated temperatures were conducted to examine the shear strength and transition of failure modes depending on the test temperature.

Findings

The tensile and shear strengths as well as the reduction factors at the elevated temperature for each steel grade of the self-drilling screw were quantified. Furthermore, either screw shear or sheet bearing failure mode depending on the test temperature was observed for the screwed connection.

Originality/value

The transition of the failure modes for the screwed connection could be explained using the calculation formulae for the shear strengths at elevated temperatures, which were proposed in this study.

Details

Journal of Structural Fire Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 August 2022

Kok Keong Choong, Fatimah De’nan, Seen Hooi Chew and Nor Salwani Hashim

Recently, the utilization of cold-formed steel (CFS) roof truss systems and different types of other combination structural support systems, such as concrete or hot-rolled steel…

Abstract

Purpose

Recently, the utilization of cold-formed steel (CFS) roof truss systems and different types of other combination structural support systems, such as concrete or hot-rolled steel support, becomes more frequently used. This paper aims to identify the load transfer characteristics of three different design details for cold-formed truss to supporting system connections and to propose simplified modelling approach for practices.

Design/methodology/approach

Simplification modelling of connection design could be proposed for practical purpose based on the load transfer characteristics obtained from detailed study using finite element method. A cold-formed roof truss system with connection is modelled using line elements. However, the supporting system is not modelled in this work. Three types of connection involve, which are five pieces of CFS L-angle brackets, one-piece of CFS L-angle brackets and three types of bolts connection are modelled.

Findings

The results of analysis show that the connections located on the loaded side experienced higher reactions than those far from loaded side. From the result, it is also found that the option of “Fixed But” support condition in STAAD.Pro with translational degree of freedom being restrained is the most suitable way to represent the CFS L-angle brackets design for Type 1 connection for use in truss modelled using line elements.

Originality/value

Such increase in usage necessitates an appropriate connection detailing depending on the behaviour of the connection.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 April 2021

Kun Liu, Wei Chen, Jihong Ye, Jian Jiang, Wenwen Chen and Mingyue Zhao

Most previous thermal-mechanical modeling of cold-formed steel (CFS) walls did not consider the failure of screwed connections under fire conditions because of the limited data of…

Abstract

Purpose

Most previous thermal-mechanical modeling of cold-formed steel (CFS) walls did not consider the failure of screwed connections under fire conditions because of the limited data of such connections at elevated temperatures.

Design/methodology/approach

In this study, 285 steady-state tests are conducted on CFS screwed connections with single-layer gypsum plasterboard (GPB) and Bolivian magnesium board (BMB) sheathing at ambient and elevated temperatures. The failure of these connections is described as the breaking of the loaded sheathing edge.

Findings

For the BMB sheathing screwed connections, hydrochloric acid gas is generated and released above 300°C, and the shear strength becomes much less than that of the GPB sheathing screwed connection above 370°C. Hence, BMB may not be suitable for use as the face-layer sheathing of CFS walls but is still recommended to replace GPB as the base-layer sheathing. The major influencing parameters on the shear strength of screwed connections are identified as the type of sheathing material and the loaded sheathing edge distance.

Originality/value

Based on the previous and present test results, a unified expression for the residual shear strength of screwed connections with GPB and BMB is proposed at ambient and elevated temperatures with acceptable accuracy. It can be used as the basic input parameter of the numerical simulation of the CFS structures under fire conditions.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 March 2016

Pedro Palma, Andrea Frangi, Erich Hugi, Paulo Cachim and Helena Cruz

This paper aims to present the results of an extensive experimental programme on the fire behaviour of timber beam-to-column shear connections, loaded perpendicularly to the grain.

Abstract

Purpose

This paper aims to present the results of an extensive experimental programme on the fire behaviour of timber beam-to-column shear connections, loaded perpendicularly to the grain.

Design/methodology/approach

The experimental programme comprised tests at normal temperature and loaded fire resistance tests on beam-to-column connections in shear. Twenty-four full-scale tests at normal temperature were performed covering nine different connection typologies, and 19 loaded fire resistance tests were conducted including 11 connections typologies.

Findings

The results of the fire resistance tests show that the tested typologies of steel-to-timber dowelled connections reached more than 30 and even 60 minutes of fire resistance. However, aspects such as a wider gap between the beam and the column, reduced dowel spacing, and the presence of reinforcement with self-drilling screws all have a negative influence on the fire resistance.

Originality/value

The experimental programme addressed the fire behaviour of timber beam-to-column shear connections loaded perpendicularly to the grain in a systematic way testing a wide range of common connection typologies significantly enlarging their experimental background.

Details

Journal of Structural Fire Engineering, vol. 7 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

46

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 1 June 2000

Richard Piggin and Ken Young

Fieldbus has been used to control self drill drive screw (SDDS), spot clinching and self pierce riveting tools mounted to a single robot with a tool changer. This has reduced…

1052

Abstract

Fieldbus has been used to control self drill drive screw (SDDS), spot clinching and self pierce riveting tools mounted to a single robot with a tool changer. This has reduced wiring complexity and enabled more robust cable dressing. The network, tool operation and tool changer are described.

Details

Industrial Robot: An International Journal, vol. 27 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 21 December 2022

Milad Shabanian and Nicole Leo Braxtan

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled…

Abstract

Purpose

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled connections and CLT beams at ambient temperature (AT), after and during non-standard fire exposure.

Design/methodology/approach

The first set of experiments was performed as a benchmark to find the load-carrying capacity of the assembly and investigate the failure modes at AT. The post-fire performance (PFP) test was performed to investigate the residual strength of the assembly after 30-min exposure to a non-standard fire. The fire-performance (FP) test was conducted to investigate the thermo-mechanical behavior of the loaded assembly during non-standard fire exposure. In this case, the assembly was loaded to 67% of AT load-carrying capacity and partially exposed to a non-standard fire for 75 min.

Findings

Embedment failure and plastic deformation of the dowels in the beam were the dominant failure modes at AT. The load-carrying capacity of the assembly was reduced to 45% of the ambient capacity after 30 min of fire exposure. Plastic bending of the dowels was the principal failure mode, with row shear in the mid-layer of the CLT beam and tear-out failure of the header sides also observed. During the FP test, ductile embedment failure of the timber in contact with the dowels was the major failure mode at elevated temperature.

Originality/value

This paper presents for the first time the thermo-mechanical performance of CLT beam-to-girder connections at three different thermal conditions. For this purpose, the outside layers of the CLT beams were aligned horizontally.

Highlights

  1. Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

  2. Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

  3. Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Article
Publication date: 10 August 2023

Nor Salwani Hashim, Fatimah De’nan and Norbaya Omar

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one…

Abstract

Purpose

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one type that has been widely used because of its simplicity in fabrication and rapid site erection. The purpose of this study is to determine the moment-rotation curve, moment of resistance (MR) and mode of failure, and the results were compared with existing results for normal flat web connections.

Design/methodology/approach

In this study, the connection modeled was the flush end-plate welded with triangular web profile (TriWP) steel beam section and then bolted to a UKC column flange. The bolted flush end-plate semi-rigid beam to column connection was modeled using finite element software. The specimen was modeled using LUSAS 14.3 finite element software, with dimensions and parameters of the finite element model sizes being 200 × 200 × 49.9 UKC, 200 × 100 × 17.8 UKB and 200 × 100 with a thickness of 20 mm for the endplate.

Findings

It can be concluded that the MR obtained from the TriWP steel beam section is different from that of the normal flat web steel beam by 28%. The value of MR for the TriWP beam section is lower than that of the normal flat web beam section, but the moment ultimate is higher by 21% than the normal flat web. Therefore, it can be concluded that the TriWP section can resist more acting force than the normal flat web section and is suitable to be used as a new proposed shape to replace the normal flat web section for a certain steel structure based on the end-plate connection behavior.

Originality/value

As a result, the TriWP section has better performance than the flat web section in resisting MR behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2020

Osama Bedair

In this work, a numerical algorithm is presented for stability analysis of cold-formed steel (CFS) channel sections.

Abstract

Purpose

In this work, a numerical algorithm is presented for stability analysis of cold-formed steel (CFS) channel sections.

Design/methodology/approach

A nonlinear optimization problem is formulated using energy-based technique of idealized channel section subject shear, compression and biaxial bending. The total potential energy is minimized with respect to skew angle and half wavelength of the buckling mode. The optimization algorithm is updated sequentially using quadratic approximation until minimum buckling coefficient is attained. The developed algorithm is validated using other numerical techniques.

Findings

The described algorithm is computationally effective and can be utilized in the industry for analysis of CFS channels under any load combination.

Practical implications

The paper offers a new tool for engineers in practice to analyze channels subject to combined loadings.

Originality/value

Very limited literature dealt with the stability of channels under combined loading. A new numerical algorithm is provided to practitioners to utilize in the industry for analysis of channel sections under combined loading. Unlike finite element or finite strip methods, the channel is not discretized into subelements. Mathematical programming technique is used to find the buckling load. Parametric studies are then carried out to highlight influences of geometric interaction of the channel components and to provide useful guidance to the design of CFS channels.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 21