Search results

1 – 10 of 92
Article
Publication date: 30 September 2019

Adam Roman Petrycki and Osama (Sam) Salem

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature…

212

Abstract

Purpose

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature of the steel connectors involved in the connection. The purpose of this study is to experimentally investigate the effects of loaded bolt end distance, number of bolt rows, and the existence of perpendicular-to-wood grain reinforcement on the structural fire behavior of semi-rigid glued-laminated timber (glulam) beam-to-column connections that used steel bolts and concealed steel plate connectors.

Design/methodology/approach

In total, 16 beam-to-column connections, which were fabricated in wood-steel-wood bolted connection configurations, in eight large-scale sub-frame test assemblies were exposed to elevated temperatures that followed CAN/ULC-S101 standard time-temperature curve, while being subjected to monotonic loading. The beam-to-column connections of four of the eight test assemblies were reinforced perpendicular to the wood grain using self-tapping screws (STS). Fire tests were terminated upon achieving the failure criterion, which predominantly was dependent on the connection’s maximum allowed rotation.

Findings

Experimental results revealed that increasing the number of bolt rows from two to three, each of two bolts, increased the connection’s time to failure by a greater time increment than that achieved by increasing the bolt end distance from four- to five-times the bolt diameter. Also, the use of STS reinforcement increased the connection’s time to failure by greater time increments than those achieved by increasing the number of bolt rows or the bolt end distance.

Originality/value

The invaluable experimental data obtained from this study can be effectively used to provide insight and better understanding on how mass-timber glulam bolted connections can behave in fire condition. This can also help in further improving the existing design guidelines for mass-timber structures. Currently, beam-to-column wood connections are designed mainly as axially loaded connections with no guidelines available for determining the fire resistance of timber connections exerting any degree of moment-resisting capability.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 March 2016

Pedro Palma, Andrea Frangi, Erich Hugi, Paulo Cachim and Helena Cruz

This paper aims to present the results of an extensive experimental programme on the fire behaviour of timber beam-to-column shear connections, loaded perpendicularly to the grain.

Abstract

Purpose

This paper aims to present the results of an extensive experimental programme on the fire behaviour of timber beam-to-column shear connections, loaded perpendicularly to the grain.

Design/methodology/approach

The experimental programme comprised tests at normal temperature and loaded fire resistance tests on beam-to-column connections in shear. Twenty-four full-scale tests at normal temperature were performed covering nine different connection typologies, and 19 loaded fire resistance tests were conducted including 11 connections typologies.

Findings

The results of the fire resistance tests show that the tested typologies of steel-to-timber dowelled connections reached more than 30 and even 60 minutes of fire resistance. However, aspects such as a wider gap between the beam and the column, reduced dowel spacing, and the presence of reinforcement with self-drilling screws all have a negative influence on the fire resistance.

Originality/value

The experimental programme addressed the fire behaviour of timber beam-to-column shear connections loaded perpendicularly to the grain in a systematic way testing a wide range of common connection typologies significantly enlarging their experimental background.

Details

Journal of Structural Fire Engineering, vol. 7 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 August 2023

Nor Salwani Hashim, Fatimah De’nan and Norbaya Omar

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one…

Abstract

Purpose

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one type that has been widely used because of its simplicity in fabrication and rapid site erection. The purpose of this study is to determine the moment-rotation curve, moment of resistance (MR) and mode of failure, and the results were compared with existing results for normal flat web connections.

Design/methodology/approach

In this study, the connection modeled was the flush end-plate welded with triangular web profile (TriWP) steel beam section and then bolted to a UKC column flange. The bolted flush end-plate semi-rigid beam to column connection was modeled using finite element software. The specimen was modeled using LUSAS 14.3 finite element software, with dimensions and parameters of the finite element model sizes being 200 × 200 × 49.9 UKC, 200 × 100 × 17.8 UKB and 200 × 100 with a thickness of 20 mm for the endplate.

Findings

It can be concluded that the MR obtained from the TriWP steel beam section is different from that of the normal flat web steel beam by 28%. The value of MR for the TriWP beam section is lower than that of the normal flat web beam section, but the moment ultimate is higher by 21% than the normal flat web. Therefore, it can be concluded that the TriWP section can resist more acting force than the normal flat web section and is suitable to be used as a new proposed shape to replace the normal flat web section for a certain steel structure based on the end-plate connection behavior.

Originality/value

As a result, the TriWP section has better performance than the flat web section in resisting MR behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 July 2017

Amir Saedi Daryan and Mahmood Yahyai

This paper aims to predicting the behavior of welded angle connections (moment-rotation-temperature) in fire using artificial neural network 10.

Abstract

Purpose

This paper aims to predicting the behavior of welded angle connections (moment-rotation-temperature) in fire using artificial neural network 10.

Design/methodology/approach

An artificial neural networking model is described to predict the moment-rotation response of semi-rigid beam-to-column joints at elevated temperature.

Findings

Data from 47 experimental fire tests and verified finite element model are used for training and testing and validating the neural network models. The model’s predicted values are compared with actual test results. The results indicate that the models can predict the moment-rotation-temperature behavior of semi-rigid beam-to-column joints with very high accuracy. The developed model can be modified easily to investigate other parameters that influence the performance of joints in fire.

Originality/value

The results indicate that the models can predict the moment-rotation-temperature behavior of semi-rigid beam-to-column joints with very high accuracy. The developed model can be modified easily to investigate other parameters that influence the performance of joints in fire.

Details

Journal of Structural Fire Engineering, vol. 9 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 March 2018

Osama (Sam) Salem

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and…

Abstract

Purpose

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and span length. The purpose of this study is to investigate the structural fire behaviour of axially restrained steel beams under different beam’s load ratios, taking into consideration the effect of the beam’s end connections configuration.

Design/methodology/approach

A three-dimensional finite element (FE) computer model has been developed to simulate the structural fire behaviour of axially restrained steel beams and their end connections. After successfully validating the developed model against the outcomes of the available large-size fire resistance experiments, the FE model has been used in a parametric study to investigate the beam’s load ratio effect on the behaviour of the axially restrained steel beams and their end connections.

Findings

The parametric study showed that increasing the beam loading level significantly increased the beam deflections at elevated temperatures; where, increasing the beam’s load ratio from 0.5 to 0.9 reduced the beam fire resistance by about 100 s. In contrast, decreasing the beam’s load ratio from 0.5 to 0.3 allowed the beam to easily achieve a 30-min fire resistance rating with no fire protection applied.

Originality/value

Experimental parametric studies are difficult to control in a laboratory setting and are also expensive and time consuming. Therefore, the reasonable accuracy of the validated FE model in reproducing the experimental fire behaviour of steel beams and their end connections makes it a very useful tool for both numerical and analytical studies.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 September 2023

Mohammad Boshagh, Mojtaba Labibzadeh, Farhad Hosseinlou and Abbas Rezaeian

In this study, the application of a novel combined steel curved damper (SCD) and steel plate shear wall (SPSW) system in the 5-, 10- and 15-storey steel moment-resisting frames…

Abstract

Purpose

In this study, the application of a novel combined steel curved damper (SCD) and steel plate shear wall (SPSW) system in the 5-, 10- and 15-storey steel moment-resisting frames (SMR) subjected to earthquake excitation has been investigated. The proposed system is called here as the SMR-WD (steel moment resisting–wall damper).

Design/methodology/approach

At the beginning of this research, an SMR-W and an SMR-D are separately modeled in ABAQUS software and verified against the available experimental data. After that, three different heights SMR-WD systems (5-, 10- and 15-storey) are designed and simulated. Then, their performances are examined and compared to the corresponding SMR-W under the effects of six actual earthquake records.

Findings

The obtained results show that the proposed system increases the mean values of the base shear for 5-, 10- and 15-storey SMR-WD equal to 27, 20.15 and 16.51%, respectively compared to the corresponding SMR-W. Moreover, this system reduces the drift of the floors so that the reduction in the average values of maximum drift for 5-, 10- and 15-storey SMR-WD is equal to 10, 7 and 29%, respectively with respect to the corresponding SMR-W. The results also reveal that the considered system dissipates more energy than SMR-W so that the increase in the mean values of the energy absorption for 5-, 10- and 15-storey SMR-WD is 30.8, 25.6 and 41.3%, respectively when compared to the SMR-W. Furthermore, it is observed that SMR-WD has a positive effect on the seismic performance of the link beams and panel zones of the frames. By increasing the height of the structure in the SMR-WD, the energy dissipation and base shear force increases and the drift of floors decreases. Hereupon, the proposed SMR-WD system is more useful for tall buildings than SMR-W frames.

Originality/value

For the first time, the application of a novel combined steel curved damper (SCD) and steel plate shear wall (SPSW) system in the 5-, 10- and 15-storey steel moment-resisting frames (SMR) subjected to earthquake excitation has been investigated.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 March 2012

Khalifa Al-Jabri and Farooq Al-Jahwari

This paper presents a finite element analysis procedure developed to study the behavior of a flexible end-plate connection between steel beams and a column at elevated…

Abstract

This paper presents a finite element analysis procedure developed to study the behavior of a flexible end-plate connection between steel beams and a column at elevated temperatures and generates temperature-rotation diagrams that describe the behavior of the connection. The analysis used a highly detailed three dimensional finite element model that is created using the commercial ABAQUS software. The steel connection properties are selected in a way that reflects commonly used connections in steel framed buildings.

The results of the finite element model are calibrated and compared to the results of experimental fire tests conducted on similar connections. The results show that the predicted behavior of the joints is in a good agreement with actual behavior of the joints. A regression model is developed to describe the behavior of flexible end-plate joints in fire.

Details

Journal of Structural Fire Engineering, vol. 3 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 April 2022

Zul-Atfi Ismail

The purpose of this paper is to show that the growing global trend of quality assurance indicates the potential of precast concrete (PC) to improve construction quality and…

Abstract

Purpose

The purpose of this paper is to show that the growing global trend of quality assurance indicates the potential of precast concrete (PC) to improve construction quality and productivity, reduce wasteful construction, and achieve design standardization and to accelerate construction time. However, its current approach for dynamic characteristics, such as stiffness and displacement on beam-column connection system design, is not effective in achieving the required quality and operational requirements.

Design/methodology/approach

A design tool based on the literature and data analysis in product planning and safety is proposed for the practice of PC building construction.

Findings

The results reveal the need for improvement of PC building performance in the construction industry, especially for the beam-column connection system. The issues include improper design, improper specification and defective concrete and steel components compared to other manufacturing methods.

Originality/value

A novel and sophisticated technique based on physical internet-enabled building information modeling (PI-BIM) is proposed to improve the planning process and safety for PC buildings in Malaysia.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 12 June 2017

Farshad Hashemi Rezvani, Behrouz Behnam, Hamid Reza Ronagh and M. Shahria Alam

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of…

Abstract

Purpose

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of the design earthquake pertinent to the structure by investigating a generic eight-story building.

Design/methodology/approach

The structure is first pushed to arrive at a target roof displacement corresponding to life safety level of performance. To simulate the post-earthquake beam-removal scenario, one of the beam elements is suddenly removed from the structure at a number of different positions. The structural response is then evaluated by using nonlinear static and dynamic analyses.

Findings

The results show that while no failure is observed in all of the scenarios, the vulnerability of the upper stories is much greater than that of the lower stories. In the next step, the structural resistance to such scenarios is determined. The results confirm that for the case study structure, at most, the resistance to failure progression in upper stories is 58 percent more than that of lower stories.

Originality/value

Failure and fracture of beam-to-column connections resulting in removal of beam elements may lead to a chain of subsequent failures in other structural members and eventually lead to progressive collapse in some cases. Deficiency in design or construction process of structures when combined by application of seismic loads may lead to such an event.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 November 2014

Osama Salem, George Hadjisophocleous and Ehab Zalok

In this paper, experimental results of the structural fire behaviour of four large-scale steel frame test assemblies are presented. Test assemblies were made of HSS beams and…

Abstract

In this paper, experimental results of the structural fire behaviour of four large-scale steel frame test assemblies are presented. Test assemblies were made of HSS beams and columns connected together using an innovative extended end-plate moment connection configuration. Two different parameters were investigated, the connection end plate thickness and the degree of beam axial restraint. The fire performance of this beam-to-column configuration was compared to the behaviour of a commonly-used connection configuration with similar parameters and fire testing conditions. The newly-developed connection configuration behaved in a more flexible manner at elevated temperature than the regular configuration. In addition to improved constructability and pleasant appearance, the new connection configuration exhibits greater moment-carrying capacity and enhanced fire resistance characteristics.

Details

Journal of Structural Fire Engineering, vol. 5 no. 4
Type: Research Article
ISSN: 2040-2317

1 – 10 of 92