Search results

1 – 10 of over 2000
Article
Publication date: 15 December 2021

Fuminobu Ozaki, Ying Liu and Kai Ye

The purpose of this study is to clarify both tensile and shear strength for self-drilling screws, which are manufactured from high-strength, martensitic-stainless and austenitic…

Abstract

Purpose

The purpose of this study is to clarify both tensile and shear strength for self-drilling screws, which are manufactured from high-strength, martensitic-stainless and austenitic stainless-steel bars, and the load-bearing capacity of single overlapped screwed connections using steel sheets and self-drilling screws at elevated temperatures.

Design/methodology/approach

Tensile/shear loading tests for the self-drilling screw were conducted to obtain basic information on the tensile and shear strengths at elevated temperatures and examine the relationships between both. Shear loading tests for the screwed connections at elevated temperatures were conducted to examine the shear strength and transition of failure modes depending on the test temperature.

Findings

The tensile and shear strengths as well as the reduction factors at the elevated temperature for each steel grade of the self-drilling screw were quantified. Furthermore, either screw shear or sheet bearing failure mode depending on the test temperature was observed for the screwed connection.

Originality/value

The transition of the failure modes for the screwed connection could be explained using the calculation formulae for the shear strengths at elevated temperatures, which were proposed in this study.

Details

Journal of Structural Fire Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 May 2021

P.S. Liu and X.M. Ma

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings…

Abstract

Purpose

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings in engineering applications.

Design/methodology/approach

With the octahedral structure model proposed by the present authors themselves, the fundamentally mechanical relations have been systematically studied for reticular metal foams with open cells in their previous works. On this basis, such model theory is continually used to investigate the failure mode of this kind of porous materials under compression, bending, torsion and shearing, which are common loading forms in engineering applications.

Findings

The pore-strut of metal foams under different compressive loadings will fail in the tensile breaking mode when it is brittle. While it is ductile, it will tend to the shearing failure mode when the shearing strength is half or nearly half of the tensile strength for the corresponding dense material and to the tensile breaking mode when the shearing strength is higher than half of the tensile strength to a certain value. The failure modes of such porous materials under bending, torsional and shearing loads are also similarly related to their material species.

Originality/value

This paper presents a distinctive method to conveniently analyze and estimate the failure mode of metal foams under different loadings in engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 September 2017

Ervina Efzan Mhd Noor and Ayodeji Samson Ogundipe

This paper aims to investigate the effect different fluxes have on the mechanical properties of lead-free solders, specifically Sn-Zn-Bi solder alloy. The solder billets were…

Abstract

Purpose

This paper aims to investigate the effect different fluxes have on the mechanical properties of lead-free solders, specifically Sn-Zn-Bi solder alloy. The solder billets were soldered in between copper substrates and flux was applied. The mechanical tests carried out on the solder alloys were tensile and shear tests. They were experimented on with different fluxes, namely, water-soluble (paste), rosin mildly activated (RMA) and insoluble (RMA) flux. From these experiments, the ultimate tensile strength, shear strength, elongation, yield stress, Young’s modulus and the stress-strain curve are derived. The results showed that solder billets that were soldered onto copper substrates with water-soluble flux yielded the highest ultimate tensile strength and shear strength values of 9.9961 MPa and 118.836 MPa, respectively. Billets soldered using RMA flux had the highest values of elongation and Young’s modulus, 0.306 mm and 50,257.295 MPa, respectively. However, on viewing the failure of all the specimens under an optical microscope and scanning electron microscope (SEM), specimens soldered using water-soluble flux possessed the least deformities, depicting their higher level of mechanical properties, entailing their strength and ductility, deeming them as the most suitable flux for microelectronic applications.

Design/methodology/approach

The solder billets were soldered in between copper substrates and flux was applied. The mechanical tests carried out on the solder alloys were tensile and shear tests. They were experimented on with different fluxes, namely, water-soluble (paste), RMA and insoluble flux (RMA) flux. From these experiments, the ultimate tensile strength, shear strength, elongation, yield stress, Young’s modulus and the stress-strain curve are derived.

Findings

The results showed that solder billets that were soldered onto copper substrates with water-soluble flux yielded the highest ultimate tensile strength and shear strength values of 9.9961 MPa and 118.836 MPa, respectively.

Originality/value

This paper demonstrated that water-soluble fluxes gave the better strength and were most suitable for microelectronics applications.

Details

Soldering & Surface Mount Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 July 2020

Toqa AL-Kasasbeh and Rabab Allouzi

This research is part of a project that aims to investigate using foamed concrete structurally in houses. Foamed concrete has a porous structure that makes it light in weight…

Abstract

Purpose

This research is part of a project that aims to investigate using foamed concrete structurally in houses. Foamed concrete has a porous structure that makes it light in weight, good in thermal insulation, good in sound insulation and workable.

Design/methodology/approach

An experimental program is conducted in this research to investigate the behavior of polypropylene fiber reinforced foam concrete beams laterally reinforced with/without glass fiber grid.

Findings

The results proved the effectiveness and efficiency of using glass fiber grid as lateral reinforcements on the shear strength of reinforced foam concrete ribs, in reducing the cracks width and increasing its shear capacity, contrary to using glass fiber grid of reinforced foam concrete beams since glass fiber grid did not play good role in beams.

Originality/value

Limited literature is available regarding the structural use of foam concrete. However, work has been done in many countries concerning its use as insulation material, while limited work was done on structural type of foam concrete.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 August 2018

Hamed Hemmati Pourghashti, Malek Mohammad Ranjbar and Rahmat Madandoust

The purpose of this paper is to conduct a laboratory investigation on measuring the tensile strength of recycled concrete using a double punch test. Furthermore, one of the main…

Abstract

Purpose

The purpose of this paper is to conduct a laboratory investigation on measuring the tensile strength of recycled concrete using a double punch test. Furthermore, one of the main goals of this study is to compare the tensile and compressive strengths of recycled concrete samples.

Design/methodology/approach

Recycled concrete samples were made with variables such as aggregate type (natural stone and aggregate recycled concrete), different water-to-cement ratios and different treatment conditions in the first stage. In the next stage, the double punch test was performed on them, and finally the results obtained from experiments were analyzed and investigated.

Findings

According to the above tests, it was concluded that: first, according to the laboratory results, the strength of concrete containing recycled aggregates becomes closer to the strength of concrete containing natural aggregates whenever the water-to-cement ratio is higher. Second, upon investigating the treatment conditions, it was observed that the treatment had a greater effect on the strength of the recycled concrete. However, this effect was less tangible in tensile strength. Third, upon investigating the results of tensile strength, it can be said that the Barcelona test results were closer to the direct tensile test results compared to the Brazilian test results. This indicates the higher viability of Barcelona’s test results. Fourth, the results obtained from the Barcelona tensile test for recycled concrete were closer to the results of the direct tensile test compared to the concrete containing natural aggregates, which suggests that the Barcelona test is more suitable as a tensile test for recycled concrete. Fifth, the effects of various factors on tensile strength were somewhat less compared to the compressive strength, although very close. Sixth, the relationships provided by the regulation for concrete tensile strength on compressive strength were highly inconsistent with the results obtained from the direct tensile test, for which the consistency was higher for concrete containing natural aggregates compared to recycled concrete. Seventh, the dispersion of results obtained from tensile tests was higher for recycled concrete compared to concrete containing natural aggregates, but lesser of this dispersion was observed in the compressive strength.

Originality/value

According to the laboratory results, the strength of concrete containing recycled aggregates becomes closer to the strength of concrete containing natural aggregates whenever the water-to-cement ratio is higher. Upon investigating the treatment conditions, it was observed that the treatment had a greater effect on the strength of the recycled concrete. However, this effect was less tangible in tensile strength. On the basis on the results of the tensile strength, it can be said that the Barcelona test results were closer to the results of the direct tensile test compared to those of the Brazilian test. This indicates the higher viability of Barcelona’s test results. The results obtained from the Barcelona tensile test for recycled concrete were closer to the results of direct tensile test compared to the concrete containing natural aggregates, which suggests that the Barcelona test is more suitable as a tensile test for recycled concrete. The effects of various factors on tensile strength were somewhat less compared to the compressive strength, although very close. The relationships provided by the regulation for concrete tensile strength on compressive strength were highly inconsistent with the results obtained from the direct tensile test, for which the consistency was higher for concrete containing natural aggregate compared to recycled concrete. The dispersion of results obtained from tensile tests was higher for recycled concrete compared to concrete containing natural aggregate, but lesser of this dispersion was observed in the compressive strength.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 August 2019

Tao Wang, Zhanli Liu, Yue Gao, Xuan Ye and Zhuo Zhuang

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on…

170

Abstract

Purpose

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on investigating the development of tensile and shear debonding zone on the NF caused by the stresses produced by HF, and the influence of NF’s debonding behavior on the interaction between HF and NF.

Design/methodology/approach

Theoretically, tensile and shear debonding modes of NF are considered, two dimensionless parameters are proposed to characterize the difficulty of tensile and shear failure of NF, respectively. Numerically, a finite element model combining the extended finite element method and cohesive zone method (CZM) is proposed to study NF’s debonding behavior and its influence on the interaction between HF and NF.

Findings

Both theoretical analysis and numerical simulation show the existence of two debonding modes. The numerical results also show that the HF can cross, offset or propagate along the NFs depending on the parameters’ value, resulting in different fracture network and stimulated reservoir volume. When they are large, the NF’s debonding area is small, HF tends to cross the NF and the fracture network is simple; when they are small, the NF’s debonding area is large, HF will propagate along the NF. In addition, HF is easier to propagate along with NF under tensile debonding mode while it is easier to pass through NF under shear debonding mode.

Originality/value

The theoretical and numerical considerations are taken into account in the influence of the debonding of NFs on the interaction between HFs and NFs and the influence on the formation of the fracture network.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 November 2012

M.A.K. Chowdhuri and Z. Xia

It is well known that stress singularity may exist at the edges of a bonded bi‐material interface due to the discontinuity of material properties. This stress singularity causes…

1514

Abstract

Purpose

It is well known that stress singularity may exist at the edges of a bonded bi‐material interface due to the discontinuity of material properties. This stress singularity causes difficulty in accurately determining the bi‐material interface bonding strength. This paper aims to present a new design of specimen geometry to eliminate the stress singularity and present an experimental procedure to more accurately determine the bonding strength of the bi‐material interface.

Design/methodology/approach

The design is based on an asymptotic analysis of the stress field near the free edge of bi‐material interface. The critical bonding angle, which delineates the singular and non‐singular stress field near the free edge, is determined.

Findings

With the new designed specimen and a special iterative calculation algorithm, the interface bonding strength envelope of an epoxy‐aluminum interface was experimentally determined.

Originality/value

This new design of specimen, experimental procedure and iterative algorithm may be applied to obtain more reasonable and accurate bonding strength data for a wide range of bi‐material interfaces.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 April 2020

Mohd Najib Ali Mokhtar, M.Z. Abdullah, Abdullah Aziz Saad and Fakhrozi Cheani

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the…

124

Abstract

Purpose

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the self-alignment assemblies of SnAg alloy solder joints with varying silver content.

Design/methodology/approach

The shear strength assessment was conducted in accordance with the JIS Z3 198-7 standard. The standard visual inspection of IPC-A-610G was also performed to inspect the self-alignment features of the solder joint samples. Statistical analysis was conducted to determine the probabilistic relationship of shear strength of the misalignment components.

Findings

The results from the mechanical reliability study indicate that there were decreasing trends in the shear strength value as misalignment offset increased. For shift mode configuration in the range of 0-300 µm, the resulting chip assembly inspection after the reflow process was in line with the IPC-A-610G standard. The statistical analysis shows that the solder type variation was insignificant to the shear strength of the chip resistor. The study concluded that the fracture occurred partially in the termination metallization at the lower part of the chip resistor. The copper content of the joint on that area shows that the crack occurred in the solder joint, and high silver content on the selected zone indicated that the fracture happened partially in the termination structure, as the termination structure of the lead-free chip resistor consists of an inner layer of silver and an outer layer of tin.

Practical implications

This study’s findings provide valuable guidelines and references to engineers and integrated circuit designers during the reflow soldering process in the microelectronics industry.

Originality/value

Studies on the effect of component misalignment on joint mechanical reliability are still limited, and studies on solder joint reliability involving the effect of differing contents of silver on varying chip component offset are rarely reported. Thus, this study is important to effectively bridge the research gap and yield appropriate guidelines in the potential industry.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 11 September 2023

Karrar Hussein, Habibollah Akbari, Rassoul Noorossana and Rostom Yadegari

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget…

33

Abstract

Purpose

This study aims to investigate the effects of process input parameters (welding current, welding time, electrode pressure and holding time) on the output responses (nugget diameter, peak load and indentation) that control the mechanical properties and quality of the joints in dissimilar resistance spot welding (RSW) for the third generation of advanced high-strength steel (AHSS) quenching and partitioning (Q&P980) and (SPFC780Y) high-strength steel spot welds.

Design/methodology/approach

Design of experiment approach with two level factors and center points was adopted. Destructive peel and shear tensile strengths were used to measure the responses. The significant factors were determined using analysis of variance implemented by Minitab 18 software. Finally, multiresponse optimization was carried out using the desirability function analysis method.

Findings

Holding time was the most significant factor influencing nugget diameter, whereas welding current had the greatest impact on peak load and indentation. Multiresponse optimization revealed that the optimal settings were a welding current of 12.5 KA, welding time of 18 cycles, electrode pressure of 420 Kgf and holding time of 10 cycles. These settings produced a nugget diameter of 8.0 mm, a peak load of 35.15 KN and an indentation of 22.5%, with a composite desirability function of 0.764.

Originality/value

This study provides an effective approach for multiple response optimization to the mechanical behavior of RSW joints, even though there have been few studies on the third generation of AHSS joints and none on the dissimilar joints of the materials used in this study.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 September 1996

Joel W. Barlow, Joseph J. Beaman and Badrinarayan Balasubramanian

Presents the mechanical properties of a new mould‐making material, proposed for producing rapidly prototyped injection mould inserts for plastics by selective laser sintering…

1255

Abstract

Presents the mechanical properties of a new mould‐making material, proposed for producing rapidly prototyped injection mould inserts for plastics by selective laser sintering. Explains that although the strength of this material is far below that of the tool steel usually used to fabricate moulds, design calculations indicate that it can still be used for mould insert production. Points out that the thermal conductivity of this material is lower than that for steel but higher than that for plastic melts. Indicates from the calculations that proper choices of conduction length and cycle time can minimize differences, relative to steel moulds, in the operational behaviour of moulds made of the new material. Discusses the longevity of example moulds.

Details

Rapid Prototyping Journal, vol. 2 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000