Search results

1 – 10 of 42
Article
Publication date: 2 March 2012

Mohammad Sedigh Toulabi, Hossein Torkaman and Ebrahim Afjei

The purpose of this paper is to propose a combination of two novel switched reluctance generators (SRG) as a suitable prototype to produce electrical energy using natural…

Abstract

Purpose

The purpose of this paper is to propose a combination of two novel switched reluctance generators (SRG) as a suitable prototype to produce electrical energy using natural, renewable and variable speed energy resource. The paper focuses on the voltage generation analysis of two special SRGs.

Design/methodology/approach

To evaluate the proposed configurations, their structures are introduced firstly, and the output voltages of both two generators are analyzed numerically via three dimensional finite element method. After that the obtained results are validated on laboratory set up. Moreover, the main parameters of each one causing the output voltages are studied. The proposed generators have been manufactured within a common physical framework. This framework consists of two magnetically independent stator and rotor sets (layers), where each stator set includes four salient poles, while the rotor comprises of two salient poles with almost equal arc lengths and no windings. The first generator called Field assisted SRG which has a stationary reel, and so the field coil wrapped around it, and it is placed between the two‐stator sets, whereas in the second type named Self excited SRG, there is no field coil.

Findings

Via experimental and numerical analysis, it is substantiated that this interesting combination can help users to produce electrical energy from low speeds to high speeds of performance through employing each of these generators in special case of study and application separately.

Originality/value

This beneficial characteristic of two proposed SRGs can be noticed as a suitable trait in different industries such as aerospace, automobile and production of electrical energy via windmills.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Xiaodong Sun, Zhuicai Zhou, Long Chen, Zebin Yang and Shouyi Han

Inductance, torque and iron loss are the key parameters of switched reluctance motors for belt-driven starter generators. This paper aims to present the analysis of a segmented…

Abstract

Purpose

Inductance, torque and iron loss are the key parameters of switched reluctance motors for belt-driven starter generators. This paper aims to present the analysis of a segmented rotor switched reluctance motor (SSRM) with three types of winding connections for hybrid electric vehicle applications by using a two-dimensional finite element method.

Design/methodology/approach

The rotor of the studied SSRM consists of a series of discrete segments, while the stator is made up of exciting and auxiliary teeth. First, the concept and structures of the different winding connections are introduced. Then, the magnetic flux path of the three types of winding connections for the SSRM is described. Second, the magnetic flux distributions in the three parts, i.e. the stator yoke, the stator tooth and the rotor segment, are described in detail to calculate the iron losses. Third, three SSRMs with the different winding arrangements are analyzed and compared to evaluate the distinct features of the studied SSRM. The analysis and comparison mainly include self-inductances, mutual inductances, phase currents, output torque and iron loss.

Findings

It is found that the self-inductances of the three types of winding connections are almost equal, and only the SSRM1 has a positive mutual inductance. In addition, the current waveforms of SSRM1 and SSRM2 are regular. However, it is irregular in SSRM3. It is shown that SSRM1 has better characteristics, such as higher output torque, high power density, lower torque ripple and iron loss.

Originality/value

This paper proposes and analyzes three novel winding connections for the SSRM to provide guidance for enhancing the output torque and reducing the iron loss to achieve high efficiency.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Krzysztof Makowski and Aleksander Leicht

The purpose of this paper is to present analysis of an influence of rotor slots opening on self-excitation process, terminal voltage and performance characteristics of the…

Abstract

Purpose

The purpose of this paper is to present analysis of an influence of rotor slots opening on self-excitation process, terminal voltage and performance characteristics of the single-phase self-excited induction generator (SPSEIG).

Design/methodology/approach

The paper presents field analysis of the self-excitation problem in the SPSEIG and performance characteristics on the base of two-dimensional field-circuit model of the generator.

Findings

The carried out field computations of the tested SPSEIG with closed rotor slots showed that only an initial voltage across the excitation capacitor of about nominal value (230 V) causes successful self-excitation of the generator. It was also proved that the suitable opening of the rotor slots, beside remnant flux density in the rotor core, facilitates self-excitation in the generator. Since in working applications initially charging of the capacitor to almost nominal voltage may cause a problem, therefore employment of semi-closed rotor slots in the SPSEIG would be proper solution.

Originality/value

The conducted simulations, validated by laboratory tests showed that not only suitable excitation capacitor capacitance and rotor speed are needed to obtain desired terminal voltage of the generator, but also suitable initial voltage across the capacitor in auxiliary stator winding is very important and necessary for reliable self-excitation of the single-phase induction generator with closed rotor slots. The employment of semi-closed rotor slots in the SPSEIG makes the self-excitation more effective.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 May 2023

Hao Chen, Fan Yang, Miguel Pablo Aguirre, Muhammad Asghar Saqib, Galina Demidova, Alecksey Anuchin, Mohamed Orabi, Ryszard Palka, Liudmila Ivanovna Sakhno and Nikolay Vladimirovich Korovkin

Because of the shortage of energy, the development of green and reliable energy is particularly important. As a green and clean energy, wind power is widely used. As the core…

Abstract

Purpose

Because of the shortage of energy, the development of green and reliable energy is particularly important. As a green and clean energy, wind power is widely used. As the core component of wind power generation, it is particularly important to choose generators with high reliability. Switched reluctance machine is widely used as generators because of its strong fault tolerance and high reliability. Therefore, this paper aims to propose a power converter and its control strategy to improve the efficiency of switched reluctance generators.

Design/methodology/approach

In this paper, a full-bridge power converter (FBPC) instead of the asymmetric half-bridge power converter (AHBPC) is adopted to drive the switched reluctance generator (SRG) system. Compare the FBPC with the AHBPC, the FBPC has several advantages including low cost and modularization, and operation process of SRG winding current direction is variable.

Findings

The results show that the SRG system can keep smooth operation by the FBPC with relatively high efficiency.

Originality/value

The FBPC is suitable to drive the SRG system. Meanwhile, this paper introduces two excitation modes of the FBPC as three-phase three-beat mode and six-phase six-beat mode. When the six-phase six-beat control strategy is adopted, the dead band time of the converter can be avoided. At the same time, the SRG has higher efficiency.

Details

Microelectronics International, vol. 40 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 23 August 2019

Xiaodong Sun, Jiangling Wu, Shaohua Wang, Kaikai Diao and Zebin Yang

The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to…

Abstract

Purpose

The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to propose a novel 16/10 segmented SRM (SSRM) to reduce the torque ripple and improve the fault-tolerant capability in this work.

Design/methodology/approach

The stator of the proposed SSRM is composed of exciting and auxiliary stator poles, while the rotor consists of a series of discrete segments. The fault-tolerant and torque ripple characteristics of the proposed SSRM are studied by the finite element analysis (FEA) method. Meanwhile, the characteristics of the SSRM are compared with those of a conventional SRM with 8/6 stator/rotor poles. Finally, FEA and experimental results are provided to validate the static and dynamic characteristics of the proposed SSRM.

Findings

It is found that the proposed novel 16/10 SSRM for the application in the belt-driven starter generator (BSG) possesses these functions: less mutual inductance and high fault-tolerant capability. It is also found that the proposed SSRM provides lower torque ripple and higher output torque. Finally, the experimental results validate that the proposed SSRM runs with lower torque ripple, better output torque and fault-tolerant characteristics, making it an ideal candidate for the BSG and similar systems.

Originality/value

This paper presents the analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in hybrid electric vehicles. Using FEA simulation and building a test bench to verify the proposed SSRM’s superiority in both torque ripple and fault-tolerant capability.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 October 2022

Eyyüp Öksüztepe, Ufuk Kaya and Hasan Kurum

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental…

Abstract

Purpose

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental and economic considerations. Hence, efficient and reliable starter/generators (SGs) are trending nowadays. The conventional main engine starting system and power generation system can be replaced with an individual SG. The constraints of the SG should be investigated to handle the aviation requirements. Even though the SG is basically an electric machine, it requires a multidisciplinary study consisting of electromagnetic, thermal and mechanical works to cope with aviation demands. This study aims to review conventional and new-generation aircraft SGs from the perspective of electric drive applications.

Design/methodology/approach

First of all, the importance of the MEA concept has been briefly explained. Also, the historical development and the need for higher electrical power in aircraft have been indicated quantitatively. Considering aviation requirements, the candidate electrical machines for aircraft SG have been determined by the method of scoring. Those machines are compared over 14 criteria, and the most predominant of them are specified as efficiency, power density, rotor thermal tolerance, high-speed capability and machine complexity. The features of the most suitable electrical machine are pointed out with data gathered from empirical studies. Finally, the trending technologies related to efficient SG design have been explained with numeric datasets.

Findings

The induction motor, switched reluctance motor and permanent magnet synchronous motor (PMSM) are selected as the candidate machines for SGs. It has been seen that the PMSM is the most preferable machine type due to its efficient operation in a wide range of constant power and speed. It is computationally proven that the using amorphous magnetic alloys in SG cores increases the machine efficiency more. Also, the benefits of high voltage direct current (HVDC) use in aircraft have been explained by a comparison of different aircraft power generation standards. It is concluded that the HVDC use in aircraft decreases total cable weight and increases aircraft operation efficiency. The thermal and mechanical tolerance of the SG is also vital. It has been stated that the liquid cooling techniques are suitable for SGs.

Originality/value

The demand for electrical power in new generation aircraft is increasing. The SG can be used effectively and efficiently instead of conventional systems. To define requirements, constraints and suggestions, this study investigates the SGs from the perspective of electric drive applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 October 2014

Qingqing Ma, Baoming Ge, Daqiang Bi, Fernando J.T.E. Ferreira and Aníbal T. de Almeida

The purpose of this paper is to propose a new three-phase switched reluctance motor (SRM), and achieve high-torque and low-cost. This new SRM's winding configuration uses the…

Abstract

Purpose

The purpose of this paper is to propose a new three-phase switched reluctance motor (SRM), and achieve high-torque and low-cost. This new SRM's winding configuration uses the double-layer distributed windings, which is different from the conventional SRM's single tooth coils.

Design/methodology/approach

The operating principle of new SRM is analyzed, and the voltage equation and the generated torque are deduced. Finite element method (FEM) and finite element circuit coupled method are utilized to evaluate the new motor's operating performances. The two dimensional (2D) frequency response analysis model is employed in the FEM model. Based on the 2D frequency response analysis model, the magnetic field distribution, self-inductance, and mutual-inductance for the new SRM are analyzed in detail. A co-simulation model using FE analysis package and Matlab-Simulink is proposed to simulate the new SRM drive. The simulated and experimental results verify the new SRM.

Findings

For the new SRM with double-layer distributed windings, a co-simulation method is proposed to analyze its characteristics. The new SRM presents lower torque ripple coefficient and generates larger torque than the conventional SRM, with three-wire and standard full bridge power converter, rather than six-wire and asymmetric half-bridge converter for conventional SRM.

Originality/value

This paper proposes a new SRM with the double-layer distributed windings driven by a standard full bridge inverter. In order to calculate dynamic characteristics of the new SRM, a co-simulation method using FEM and Simulink is proposed to simulate the new SRM drive, where the power inverter and the current chopping control algorithm are implemented.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2012

Jinhua Du, Deliang Liang and Qingfu Li

The purpose of this paper is to propose a method to estimate the magnetic saturation and end effect of linear switched reluctance machines (LSRMs) with fully pitched winding…

Abstract

Purpose

The purpose of this paper is to propose a method to estimate the magnetic saturation and end effect of linear switched reluctance machines (LSRMs) with fully pitched winding configuration used in the wave energy conversion.

Design/methodology/approach

The magnetic saturation and strong coupling make it very difficult to derive a comprehensive mathematical model for the behavior of the LSRMs. Meanwhile, the various end effects could not be comprehensively considered in the two‐dimensional model which is widely studied. Therefore, the magnetic equivalent circuit model including the three‐dimensional (3‐D) effects is presented in this paper and 3‐D finite element analysis (FEA) is used to validate the mathematical model.

Findings

The results from 3‐D FEA are in good agreement with the numerical simulation, which validates the accuracy of the magnetic equivalent circuit modeling method.

Practical implications

This technique helps one to know the influence exerted by the magnet saturation and end effect of LSRMs and provides a powerful computer‐aided analysis tool. Meanwhile, this modeling method supplies accurate values for the following study of reliable control algorithm.

Originality/value

The paper presents a magnetic equivalent method to estimate the magnetic saturation and end effect of LSRMs with fully pitched winding configuration used in the wave energy conversion.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

P.Di Barba

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields…

Abstract

Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields. Looks at the coupling of fields in a device or a system as a prescribed effect. Points out that there are 12 contributions included ‐ covering magnetic levitation or induction heating, superconducting devices and possible effects to the human body due to electric impressed fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 42