Search results

1 – 10 of over 8000
To view the access options for this content please click here
Article
Publication date: 13 July 2010

S. Jelassi, R. Romary and J.F. Brudny

The aim of this paper is to estimate the iron losses for an induction machine in the healthy case taking the slotting effect into account and to study the effect of an…

Abstract

Purpose

The aim of this paper is to estimate the iron losses for an induction machine in the healthy case taking the slotting effect into account and to study the effect of an inter‐turn short‐circuit on these losses. Theoretical results are then compared with experimental ones.

Design/methodology/approach

A simple analytical model of iron losses allows one to calculate and to appreciate the contribution of the slotting effect on induction machine iron losses without and with an inter‐turn stator short‐circuit. This semi‐analytical approach is based on the iron stator and rotor flux density repartition which is deduced from the air‐gap flux density.

Findings

The iron losses are not only due to the fundamental air‐gap flux density, but also to the slotting harmonics. In fact, the slotting effect generates harmonic flux density waves with very low magnitudes but with high‐angular velocities, leading to non‐negligible harmonic iron dynamic losses which have similar values on both the stator and the rotor. The inter‐turn short‐circuit generates an iron losses and a slotting harmonic contribution increase.

Research limitations/implications

Experimental measurements give the total iron losses. They do not allow separating the fundamental and the slotting harmonics contribution.

Practical implications

The knowledge of the iron losses behaviour in the healthy machine taking into account the slotting effect is important to optimize the design. The fault contribution on these losses allows one to estimate the damage which can be engendered by the fault.

Originality/value

Generally, iron losses studies and calculations are performed numerically using finite element software. The analytical approach can be interesting because it allows one to make faster calculations and to analyze the influence of the machine geometric parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 2006

Heon Lee, Heegon Moon, Semyung Wang and Kyungbae Park

Aims to discuss iron loss analysis and experimenting with linear oscillating actuator for linear compressor.

Abstract

Purpose

Aims to discuss iron loss analysis and experimenting with linear oscillating actuator for linear compressor.

Design/methodology/approach

The iron loss analysis of the linear oscillating actuator is performed by using ANSYS and iron loss curves, which is obtained by an Epstein test apparatus.

Findings

The way to calculate the iron loss of the linear oscillating actuator for the linear compressor and the method to experiment the iron loss of that can be studied.

Research limitations/implications

Iron loss analysis of the linear compressor considering the motor part and the structure part is needed.

Originality/value

Each iron loss analysis method examined here can be used to analyze the iron loss of the linear motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 13 November 2009

Zbigniew Gmyrek

The purpose of this paper is to discuss a new method of iron loss estimation under pulse width modulation (PWM) converter supply. The proposed method concerns the…

Abstract

Purpose

The purpose of this paper is to discuss a new method of iron loss estimation under pulse width modulation (PWM) converter supply. The proposed method concerns the longitudinal magnetisation.

Design/methodology/approach

A novel method of iron loss estimation applies values of iron losses that come from a single higher harmonic coexisting with a DC‐bias field. This method considers non‐linearity of ferromagnetic. Results of estimation are validated using experimental results.

Findings

The paper formulates that the dependence of iron losses come from harmonics, on DC‐bias field. Moreover, it formulates possibilities of their utilization to iron loss estimation in case of deformed flux. On the other hand, it discusses the influence of DC‐bias field on static hysteresis and classical eddy current losses.

Research limitations/implications

Experimental verification will still be needed as to the accuracy of the proposed model and applicability to various magnetic materials.

Practical implications

The paper provides an easy mathematical method of iron loss estimation, under PWM voltage supply.

Originality/value

The paper explains how to use an analytical method and results of iron losses come from single harmonics, obtained under coexistence with DC‐bias field, to iron loss estimation in case of longitudinal magnetisation where deformed magnetic flux occurs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 6 November 2017

Longfei Zhu, Wenming Tong, Xueyan Han and Jianguo Zhu

The specific iron losses of amorphous alloy material are extremely low compared with silicon steel material. The iron losses of motors may reduce by replacing the silicon…

Abstract

Purpose

The specific iron losses of amorphous alloy material are extremely low compared with silicon steel material. The iron losses of motors may reduce by replacing the silicon steel core with an amorphous alloy core. However, one drawback of amorphous alloy material is that the specific iron losses will increase a lot after the motor manufacturing process. This paper aims to study the influences of interlaminar insulator solidifying and annealing on amorphous alloy material. The iron losses of motors made of amorphous alloy and baseline silicon steel sheets are compared and discussed.

Design/methodology/approach

This paper opted for an exploratory study using the experimental analysis and loss separation methods. Two amorphous alloy cores are produced and tested. The iron losses of motors made of amorphous alloy and silicon steel sheets are calculated and compared based on the measured specific iron losses. Three wound amorphous alloy core samples are made and measured. The iron losses are separated and compared by considering the manufacturing influences.

Findings

This paper provides empirical insights about what change is brought in amorphous alloy material after manufacturing. The results have shown that, for amorphous alloy cores without the annealing process, the loss increase caused by solidifying is mainly the eddy current loss, while it is mainly the hysteresis loss component for annealed amorphous alloy cores.

Originality/value

This paper presents for the first time the measured results of manufactured amorphous alloy cores. This paper fulfils the need to manufacture amorphous alloy motors properly for the producers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 26 June 2019

Benedikt Groschup, Silas Elfgen and Kay Hameyer

The cutting process of the electric machine laminations causes residual mechanical stress in the soft magnetic material. A local magnetic deterioration can be observed and…

Abstract

Purpose

The cutting process of the electric machine laminations causes residual mechanical stress in the soft magnetic material. A local magnetic deterioration can be observed and the resulting local and global iron losses increase. A continuous local material model for the consideration of the changing magnetization properties has been introduced in a previous work as well as an a priori assessment of iron losses. A local iron loss calculation considering both a local magnetization and local loss parameters misses yet. The purpose of this study is to introduce a local iron loss calculation model considering both a local magnetization and local loss parameters.

Design/methodology/approach

In this paper, an approach for local iron loss simulation is developed and a comparison to the cut-edge length-dependent loss model is given. The comparison includes local loss distribution in the lamination as well as the impact on the overall motor efficiency and vehicle range in an electric vehicle driving cycle.

Findings

For an analysis of the resulting local iron loss components, both the local magnetization and iron loss parameters must be considered using physically based models. Consistently, a local iron loss model is presented in the work. The developed model can be used to gain detailed information of the local loss distribution inside the machine. The comparability of this local iron loss with the cut-edge length approach for overall system characteristics, e.g. efficiency or driving range, is shown.

Originality/value

A local iron loss simulation approach is a physical accurate model to describe the influence of cutting techniques on electric machine characteristics. A comparison with the less complicated a priori assessment gives detailed information about the necessity of the local model under consideration of the given problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 2 January 2018

Wenju Yan, Hao Chen, Lei Chen and Kai Wang

This paper aims to establish a modified variable coefficient calculation model to analyse the control parameter effect on the iron loss of switched reluctance motor under…

Abstract

Purpose

This paper aims to establish a modified variable coefficient calculation model to analyse the control parameter effect on the iron loss of switched reluctance motor under pulse width modulation (PWM) mode.

Design/methodology/approach

The finite element model is solved to get the flux density by python language. Due to non-sinusoidal flux density feature and the effect of PWM excitation, the Fourier transform is applied in consideration of harmonic components. To improve the accuracy of iron loss computation, the effect of minor loops is considered by using the rain-flow counting method.

Findings

When the speed fluctuates around the set speed and the fluctuations are relatively small, it is useful to reduce the iron loss with smaller duty ratio and turn-on angle or greater duty ratio and smaller turn-off angle. The iron loss is less affected by chopping frequency, while the iron loss increases obviously with higher conduction angles. The iron loss under non-energy-returnable-voltage-chop mode is greater than energy-returnable-voltage-chop mode.

Originality/value

The modified variable coefficient MIEM5 iron loss model is proposed to improve the accuracy of iron loss calculation. Then the control parameters such as duty ratio, chopping frequency, turn on angle and turn off angle are analysed under PWM mode.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 16 November 2010

A. Belahcen, E. Dlala, K. Fonteyn and M. Belkasim

The purpose of this paper is to find out how to model iron losses in electrical machines accurately and efficiently.

Abstract

Purpose

The purpose of this paper is to find out how to model iron losses in electrical machines accurately and efficiently.

Design/methodology/approach

The starting point was a previously developed vector hysteresis model that was designed and incorporated into the 2D time‐stepping finite‐element (FE) simulation of induction machines. The developed approach here is a decoupling between the vector hysteresis model and the 2D FE model of the machine. The huge time consumption of the incorporated hysteresis model required some new approach to make the model computationally efficient. This is dealt with through an a posteriori use of the vector hysteresis model.

Findings

In this research, it was found that the vector hysteresis model, although used in an a posteriori scheme is able to accurately predict the iron losses as far as these losses are small enough not to affect the other operation characteristics of the machine.

Research limitations/implications

The research methods reported in this paper deal mainly with induction machines. The methods should be applied for transient operations of the induction machines as well as for other types of machines. The fact that the iron losses do not affect very much the operation characteristics of the machine is based on the fact that the air gap field plays a major role in these machines. The method cannot be applied to other magnetic devices where the iron losses are the main loss component.

Originality/value

The paper is of practical value for designers of electrical machines, who use FE programs. The methods presented here allow them to use a different FE package to simulate the machine and own routines (based on the presented methods) to predict the iron losses without loss of accuracy and in a reasonably short time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 24 June 2019

Jan Karthaus, Benedikt Groschup, Robin Krüger and Kay Hameyer

Due to the increasing amount of high power density high-speed electrical machines, a detailed understanding of the consequences for the machine’s operational behaviour and…

Abstract

Purpose

Due to the increasing amount of high power density high-speed electrical machines, a detailed understanding of the consequences for the machine’s operational behaviour and efficiency is necessary. Magnetic materials are prone to mechanical stress. Therefore, this paper aims to study the relation between the local mechanical stress distribution and magnetic properties such as magnetic flux density and iron losses.

Design/methodology/approach

In this paper, different approaches for equivalent mechanical stress criteria are analysed with focus on their applicability in electrical machines. Resulting machine characteristics such as magnetic flux density distribution or iron are compared.

Findings

The study shows a strong influence on the magnetic flux density distribution when considering the magneto-elastic effect for all analysed models. The influence on the iron loss is smaller due to a high amount of stress-independent eddy current loss component.

Originality/value

The understanding of the influence of mechanical stress on dimensions of electrical machines is important to obtain an accurate machine design. In this paper, the discussion on different equivalent stress approaches allows a new perspective for considering the magneto-elastic effect.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 5 July 2013

Mircea Fratila, Abdelkader Benabou, Abdelmonaïm Tounzi and Maxime Dessoude

Pulse width modulated (PWM) inverters are widely used to feed induction motors for variable speed applications. The use of PWM power supplies induces additional magnetic…

Abstract

Purpose

Pulse width modulated (PWM) inverters are widely used to feed induction motors for variable speed applications. The use of PWM power supplies induces additional magnetic losses in the magnetic circuit of the electrical machine. The aim of this paper is to present a novel analytical approach to account for these losses.

Design/methodology/approach

The methodology proposed here consists in identifying the analytical method with a static Preisach hysteresis model. The Preisach model was validated by comparing it with measurements obtained from an Epstein frame. Then, the results obtained with this approach were compared with a basic analytical method that is widely used.

Findings

The authors' model provides a fast way for estimating the minor loop iron losses introduced by static convertors. They compared the proposed model with another analytical model (J. Lavers model) for different wave forms. One can observe that the J. Lavers model overestimates the iron losses introduced by the non‐centred minor loops.

Originality/value

In this paper, an improved analytical model is presented which estimates the non‐centred minor loop iron losses. In order to do a precise estimation of the iron loss introduced by the minor loops, the authors' model takes into account the position and the size of the minor loop. The proposed model is identified from a static Preisach model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 5 May 2015

Andreas Ruf, Simon Steentjes, David Franck and Kay Hameyer

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss

Abstract

Purpose

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss and the performance of the electrical machine. The applied approach is based on measured material characteristics for various frequencies and magnetic flux densities. These are varied during the simulation according to the operational conditions of the rotating electrical machine. Therewith, the fault being committed neglecting the frequency-dependent magnetization behaviour of the magnetic material is examined in detail.

Design/methodology/approach

The influence of non-linear frequency-dependent material properties is studied by variation of the frequency-dependent magnetization characteristics. Two different non-oriented electrical steel grades having the same nominal losses at 1.5 T and 50 Hz, but different thickness, classified as M330-35A and M330-50A are studied in detail. Both have slightly different magnetization and loss behaviour.

Findings

This analysis corroborates that it is important to consider the frequency-dependency and saturation behaviour of the ferromagnetic material as well as its magnetic utilization when simulating electrical machines, i.e., its performance. The necessity to change the magnetization curve according to the applied frequency for the calculation of operating points depends on the applied material and the frequency range. Using materials, whose magnetization behaviour is marginally affected by frequency, causes a deviation in the flux-linkage and the electromagnetic torque in a small frequency range. However, analysing larger frequency ranges, the frequency behaviour of the material cannot be neglected. For instance, a poorer magnetizability requires a higher quadrature current to keep the same torque leading to increased copper losses. In addition, the applied iron-loss model plays a central role, since changes in magnetization behaviour with frequency lead to changes in the iron losses. In order to study the impact, the iron-loss model has to be capable to incorporate the harmonic content, because particularly the field harmonics are influenced by the shape of the magnetization curve.

Originality/value

This paper gives a close insight on the way the frequency-dependent non-linear magnetization behaviour affects the energy loss and the performance of electrical machines. Therewith measures to tackle this could be derived.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 8000