Search results

1 – 10 of over 23000
Article
Publication date: 1 April 2006

Peter Nyhuis and Markus Vogel

To provide a model for precise logistic controlling of one‐piece flow processes and for the description of the interactions between logistic performance measures. The developed…

4640

Abstract

Purpose

To provide a model for precise logistic controlling of one‐piece flow processes and for the description of the interactions between logistic performance measures. The developed method can help manufacturing enterprises to control their production processes and therewith to exploit existing rationalization potentials in their production.

Design/methodology/approach

The Institute of Production System and Logistics adapted the logistic operating curve for schedule reliability and the logistic operating curve for mean throughput time to describe the behaviour of one‐piece flow processes. This model‐based method depicts the correlation between the delivery reliability and mean WIP level of single manufacturing systems and enables a goal‐oriented modelling as well as a controlling of single manufacturing processes.

Findings

The derivation, calculation, and fields of application of the logistic operating curves for one‐piece flow processes, that give a functional relationship between mean WIP, mean throughput time and schedule reliability, are presented in this paper. Moreover, the paper presents how the logistic performance measures can be adjusted to target values.

Originality/value

This paper offers practical help to manufacturing enterprises confronted with the task of evaluation and optimization of manufacturing processes within the framework of production controlling. Moreover, the developed method enables manufacturing enterprises to identify bottleneck work systems where action can be taken to optimize their schedule situation and thereby improve the delivery reliability of an entire manufacturing department.

Details

International Journal of Productivity and Performance Management, vol. 55 no. 3/4
Type: Research Article
ISSN: 1741-0401

Keywords

Book part
Publication date: 8 May 2003

Yafeng Yin, William H. K. Lam and Hitoshi Ieda

This paper attempts to assess the transit service reliability with taking into account the interaction between network performance and passengers' travel choice behaviors. Besides…

Abstract

This paper attempts to assess the transit service reliability with taking into account the interaction between network performance and passengers' travel choice behaviors. Besides the well-known schedule reliability, a waiting-time reliability is newly defined as the probability that the passengers' average waiting time is less than a given threshold. A Monte Carlo simulation approach, which incorporates a stochastic user equilibrium transit assignment model with explicit capacity constraints and elastic frequencies, is proposed to estimate the above two reliability measures of transit service. A numerical example is used to illustrate the applicability of the reliability measures and the proposed approach.

Details

The Network Reliability of Transport
Type: Book
ISBN: 978-0-08-044109-2

Article
Publication date: 5 February 2018

Chanchal Ghosh, J. Maiti, Mahmood Shafiee and K.G. Kumaraswamy

The modern helicopters are designed with maximum serviceability and long life expectancy to ensure minimum life cycle cost. The purpose of this paper is to present a framework to…

Abstract

Purpose

The modern helicopters are designed with maximum serviceability and long life expectancy to ensure minimum life cycle cost. The purpose of this paper is to present a framework to incorporate the customer requirements on reliability and maintainability (R&M) parameters into the design and development phase of a contemporary helicopter, and to discuss the way to capture operational data to establish and improve the R&M parameters to reduce life cycle cost.

Design/methodology/approach

From the analysis, it is established that the reliability and maintainability cost is the major contributor to the life cost. The significant reliability and maintainability parameters which influence R&M cost are identified from analysis. The operational and design data of a contemporary helicopter are collected, compiled and analyzed to establish and improve the reliability and maintainability parameters.

Findings

The process depicted in the paper is followed for a contemporary helicopter and substantial amount of life cycle cost reduction is observed with improvement of R&M parameters.

Practical implications

The benefits of this methodology not only reduce life cycle cost but also improve the availability/serviceability through less failure and less time for scheduled maintenance. The methodologies also provide the reliability trends indicating potential area for design improvement.

Originality/value

The proposed approach assists asset managers to reduce the life cycle costs through improvement of R&M parameters.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 31 December 2020

Cheng-Wei Lin, Wan-Chi Jackie Hsu and Hui-Ju Su

The shipper selects a suitable shipping route and plans for a voyage in order to import and export cargo on the basis of published sailing schedules. The reliability of the…

Abstract

The shipper selects a suitable shipping route and plans for a voyage in order to import and export cargo on the basis of published sailing schedules. The reliability of the sailing schedule will influence the shipper’s logistics expense, which means that the logistics costs will depend on the reliability of schedules published by container shipping companies. Therefore, it is important to consider factors which can cause delays would for container ships sailing on sea routes. The reliability of published sailing schedules can be affected by a number of different factors. This study adopts the multi-criteria decision making (MCDM) method to estimate the importance of the delaying factors in a sailing schedule. In addition, the consistent fuzzy preference relations (CFPR) method is applied to identify the subjective importance (weights) of the delaying factors. The entropy weight method combined with the actual performance of the container shipping company are both used when estimating the objective importance (weights) of the delaying factors. According to the analysis results, the criteria can be divided into four quadrants with different management implications, which indicate that instructions for chase strategy, sailing schedule control, fleet allocation, transship operation arrangement and planning for ports in routes are often ignored by container shipping companies. Container shipping companies should consider adjusting their operational strategies, which would greatly improve their operational performance.

Details

Journal of International Logistics and Trade, vol. 18 no. 4
Type: Research Article
ISSN: 1738-2122

Keywords

Article
Publication date: 1 August 2016

Pravin P Tambe and Makarand S Kulkarni

The traditional practice for maintenance, quality control and production scheduling is to plan independently irrespective of an interrelationship exist between them. The purpose…

Abstract

Purpose

The traditional practice for maintenance, quality control and production scheduling is to plan independently irrespective of an interrelationship exist between them. The purpose of this paper is to develop an approach for integrating maintenance, quality control and production scheduling. The objective is to investigate the benefits of the integrated effect in terms of the expected total cost of system operation of the three functions.

Design/methodology/approach

The proposed approach is based on the conditional reliability of the components. Cost model for integrating selective maintenance, quality control using sampling-based procedure and production scheduling is developed using the conditional reliability. An integrated approach is such that, first an optimal schedule for the batches to be processed is obtained independently while the maintenance and quality control decisions are optimized considering the optimal schedule on the machine. The expected total cost of conventional approach, i.e. “No integration” is calculated to compare the effectiveness of integrated approach.

Findings

The integrated approach have shown a higher cost saving as compared to the independent planning approach. The approach is practical to implement as the results are obtained in a reasonable computational time.

Practical implications

The approach presented in this paper is generic and can be applied at planned as well as unplanned opportunities. The proposed integrated approach is dynamic in nature, as during maintenance opportunities, it is possible to optimize the decision on maintenance, quality control and production scheduling considering the current age of components and production requirement.

Originality/value

The originality of the paper is in the approach for integration of the three elements of shop floor operations that are usually treated separately and rarely touched upon by researchers in the literature.

Details

International Journal of Quality & Reliability Management, vol. 33 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 August 2021

Tarek Salama, Ahmad Salah and Osama Moselhi

The purpose of this paper is to present a new method for project tracking and control of integrated offsite and onsite activities in modular construction considering practical…

1077

Abstract

Purpose

The purpose of this paper is to present a new method for project tracking and control of integrated offsite and onsite activities in modular construction considering practical characteristics associated with this type of construction.

Design/methodology/approach

The design embraces building information modelling and integrates last planner system (LPS), linear scheduling method (LSM) and critical chain project management (CCPM) to develop tracking and control procedures for modular construction projects. The developed method accounts for constraints of resources continuity and uncertainties associated with activity duration. Features of proposed method are illustrated in a case example for tracking and control of modular projects.

Findings

Comparison between developed schedule and Monte Carlo simulation showed that baseline duration generated from simulation exceeds that produced by developed method by 12% and 10% for schedules with 50% and 90% confidence level, respectively. These percentages decrease based on interventions of members of project team in the LPS sessions. The case example results indicate that project is delayed 5% and experienced cost overrun of 2.5%.

Originality/value

Developed method integrated LPS, LSM and CCPM while using metrics for reliability assessment of linear schedules, namely, critical percent plan complete (PPCcr) and buffer index (BI). PPCcr and BI measure percentage of plan completion for critical activities and buffer consumption, respectively. The developed method provides a systematic procedure for forecasting look-ahead schedules using forecasting correction factor Δt and a newly developed tracking and control procedure that uses PPCcr and BI. Quantitative cost analysis is also provided to forecast and monitor project costs to prove the robustness of proposed framework.

Details

Construction Innovation , vol. 21 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 April 2021

Mohamed Kasbar, Sheryl Staub-French, Angelique Pilon, Erik Poirier, Zahra Teshnizi and Thomas Froese

The purpose of this paper is to improve the understanding of the impact of mass timber construction methods on construction performance through the successful delivery of the…

Abstract

Purpose

The purpose of this paper is to improve the understanding of the impact of mass timber construction methods on construction performance through the successful delivery of the first-of-a-kind tall wood building, Brock Commons Tallwood House (Tallwood House). This paper is one of a set of papers examining the project; companion papers describe innovations used during the mass timber design and construction processes.

Design/methodology/approach

A mixed-method, longitudinal case study approach was used in this research project to investigate and document the Tallwood House project. Quantitative data were collected to perform the following analysis: hook time, the variability of productivity and schedule reliability. Members of the research team observed construction progress, meetings and decision-making, conducted periodic interviews and reviewed project artifacts.

Findings

The research presented in this paper is the culmination of a longitudinal study aimed at studying the innovation process on a project where radical innovations of structural systems were developed. Prefabrication, combined with the use of a virtual design and construction (VDC) model for planning and fabrication and early collaboration with trades, construction managers and consultants, increased the labor productivity of the on-site erection of the mass timber structural components and envelope panels and expedited the construction schedule.

Originality/value

This paper details an in-depth investigation into the construction productivity for a unique building project and lessons learned. The case study chosen is the construction of Tallwood House at the University of British Columbia. Tallwood House was the tallest mass-timber hybrid building in the world at the time of its construction.

Article
Publication date: 3 August 2018

Zhengxu Wang and Chonghui Guo

In seaport industries, vessel arrival delay is inevitable because of numerous factors, e.g. weather, delay due to the previous stop, etc. The period of delay can be as short at…

Abstract

Purpose

In seaport industries, vessel arrival delay is inevitable because of numerous factors, e.g. weather, delay due to the previous stop, etc. The period of delay can be as short at 15 min of as long as a few days. This causes disruption to the planned sea operation operations, and more importantly, to the resources utilization. In traditional berth allocation and quay crane assignment problems (BA-QCA), the risk of vessel arrival delay has not been considered. Accordingly, the purpose of this paper is to employ a proactive planning approach by taking into consideration the vessel arrival delay into the optimization of BA-QCA problems.

Design/methodology/approach

In the existing BA-QCA problems, vessel arrival time is usually deterministic. In order to capture the uncertainties of arrival delay, this paper models the arrival time as a probability distribution function. Moreover, this paper proposes to model the delay risk by using the period between the expected arrival time and the expected waiting time of a vessel. Lastly, the authors propose a new modified genetic algorithm and a new quay crane assignment heuristic to maximize the schedule reliability of BA-QCA.

Findings

A number of numerical experiments are conducted. First of all, the optimization quality of the proposed algorithm is compared with the traditional genetic algorithm for verifying the correctness of the optimization approach. Then, the impact of vessel arrival delay is tested in different scenarios. The results demonstrate that the impact of vessel arrival delay can be minimized, especially in the situations of high vessel to potential berth ratio.

Research limitations/implications

The proposed vessel arrival modeling approach and the BA and QCA approach can increase the operations efficiency of seaports. These approaches can increase the resource utilization by reducing the effect of vessel arrival delay. In other words, this can improve the throughput of seaport terminals.

Originality/value

This paper proposes to minimize the delay risk based on the conditional probability of the vessel completion time based on the previous vessel at the assigned berth. This modeling approach is new in literature.

Details

Industrial Management & Data Systems, vol. 118 no. 7
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 August 1994

Noemi M. Paz and William Leigh

Productivity, based on estimated and actual hours, of most maintenanceworkers is only 30 to 50 per cent. Given the significance of maintenanceto manufacturing competitiveness, it…

3164

Abstract

Productivity, based on estimated and actual hours, of most maintenance workers is only 30 to 50 per cent. Given the significance of maintenance to manufacturing competitiveness, it is surprising how little research is being carried out. Scheduling is a crucial component of maintenance management and is a focus of research. Identifies the areas of concern in maintenance scheduling and surveys representative work from the academic and practitioner literature. Specific points of practice and theory which need further investigation are pinpointed.

Details

International Journal of Operations & Production Management, vol. 14 no. 8
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 31 December 2010

Sang-Yoon Lee, Young-Tae Chang and Paul Tae-Woo Lee

This study explores the main factors considered when shippers and container shipping lines select their import/export and transshipment ports. In the present study, 38 container…

Abstract

This study explores the main factors considered when shippers and container shipping lines select their import/export and transshipment ports. In the present study, 38 container port selection indices were chosen from the previous research and field interviews. The scores of the 38 items were collected via survey to the three major maritime/port market players: shippers, shipping lines, and container terminal operators. In order to analyze the different priorities imposed on the port selection factors by the three market players, the ANOVA method has been employed. The empirical test shows the different perceptions about port selection attributes among service suppliers and demanders. In addition, the 38 items have been categorized into seven key factors through an exploratory factor analysis. The ANOVA technique was employed again to analyze the perspective differences for the port selection factors among the market players. The results show that there are significant differences among the players assessing the importance of the three port choice factors: liners and terminal operators give more weight to ‘hinterland and terminal basic conditions’ than shippers; terminal operators do not take ‘line operation’ as seriously as carriers and shippers; the factor of ‘terminal operation’ is more significantly considered by liners and terminal operators than by shippers.

Details

Journal of International Logistics and Trade, vol. 8 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

1 – 10 of over 23000