Search results

1 – 10 of 179
Article
Publication date: 10 April 2019

Hoi-Lam Ma, Zhengxu Wang, S.H. Chung and Felix T.S. Chan

The purpose of this paper is to study the impacts of time segment modeling approach for berth allocation and quay crane (QC) assignment on container terminal operations efficiency.

Abstract

Purpose

The purpose of this paper is to study the impacts of time segment modeling approach for berth allocation and quay crane (QC) assignment on container terminal operations efficiency.

Design/methodology/approach

The authors model the small time segment modeling approach, based on minutes, which can be a minute, 15 min, etc. Moreover, the authors divided the problem into three sub-problems and proposed a novel three-level genetic algorithm (3LGA) with QC shifting heuristics to deal with the problem. The objective function here is to minimize the total service time by using different time segments for comparison and analysis.

Findings

First, the study shows that by reducing the time segment, the complexity of the problem increases dramatically. Traditional meta-heuristic, such as genetic algorithm, simulated annealing, etc., becomes not very promising. Second, the proposed 3LGA with QC shifting heuristics outperforms the traditional ones. In addition, by using a smaller time segment, the idling time of berth and QC can be reduced significantly. This greatly benefits the container terminal operations efficiency, and customer service level.

Practical implications

Nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time, e.g. 1.5 h. Therefore, a traditional hourly based modeling approach may cause significant berth and QC idling, and consequently cannot meet their practical needs. In this connection, a small time segment modeling approach is requested by industrial practitioners.

Originality/value

In the existing literature, berth allocation and QC assignment are usually in an hourly based approach. However, such modeling induces much idling time and consequently causes low utilization and poor service quality level. Therefore, a novel small time segment modeling approach is proposed with a novel optimization algorithm.

Details

Industrial Management & Data Systems, vol. 119 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 February 2000

Razman Mat Tahar and Khalid Hussain

Key issues of the application of modelling and simulation for the management of the Malaysian Kelang Container Terminal are discussed. The aim of the investigation is to improve…

4099

Abstract

Key issues of the application of modelling and simulation for the management of the Malaysian Kelang Container Terminal are discussed. The aim of the investigation is to improve the logistics processes at the port. The model simulates all processes required to operate the seaport efficiently and provides detailed statistics on the seaport through‐put and utilisation characteristics with a high level of accuracy. The quay cranes allocation, the resources allocations and the scheduling of the different operations are modelled to maximise the performance of the port. The assignment of prime movers to transport containers to a yard area is also considered.

Details

Logistics Information Management, vol. 13 no. 1
Type: Research Article
ISSN: 0957-6053

Keywords

Content available
Article
Publication date: 15 June 2017

Ali Dadashi, Maxim A. Dulebenets, Mihalis M. Golias and Abdolreza Sheikholeslami

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel…

1442

Abstract

Purpose

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day.

Design/methodology/approach

This paper proposes a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day. The access channel serves as a gate for vessels entering or leaving the port. During low-depth tidal periods the vessels with deep drafts have to wait until the depth of the access channel reaches the required depth.

Findings

A number of numerical experiments are performed using the operational data collected from Port of Bandar Abbas (Iran). Results demonstrate that the suggested methodology is able to improve the existing port operations and significantly decrease delayed vessel departures.

Originality/value

The contribution of this study to the state of the art is a novel mathematical model for allocation and scheduling of vessels at multiple terminals of the same port, taking into consideration channel depth variations by time of day. To the best of the authors’ knowledge, this is the first continuous berth scheduling linear model that addresses the tidal effects on berth scheduling (both in terms of vessel arrival and departure at/from the berth) at multiple marine container terminals.

Details

Maritime Business Review, vol. 2 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 31 March 2021

Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…

Abstract

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.

Details

Journal of International Logistics and Trade, vol. 19 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Content available
Article
Publication date: 4 December 2019

Etsuko Nishimura

To achieve a high container handling efficiency at transshipment hub ports, there are a variety of scheduling problem as ship-to-berth assignment (BAP), container-to-yard…

1902

Abstract

Purpose

To achieve a high container handling efficiency at transshipment hub ports, there are a variety of scheduling problem as ship-to-berth assignment (BAP), container-to-yard arrangement (YAP), etc. As it is difficult to acquire the actual data of an existing terminal under various circumstances, this study aims to develop the time estimation model of container handling. Additionally, to achieve an efficient handling of containers at the yard, this study proposes the way to optimize the yard arrangement along with the berth allocation simultaneously by using estimated handling time.

Design/methodology/approach

To obtain the handling time based on various situations of the terminal operated, the discrete simulation model of container handling is constructed. The model to estimate the handling time of a quay crane assigned to a relevant ship by multiple regression analysis is developed. To find a feasible solution to minimize the total service time which includes YAP and BAP simultaneously, a genetic algorithm based on heuristics is developed.

Findings

The proposed regression model has high performance to estimate the time spent of container handling. In the total service time, the proposed approach outperformed the existing 2-step process approach.

Originality/value

As it is difficult to acquire the actual information of an existing marine terminal under various circumstances, the paper contains a regression model to estimate the container handling time based on simulation data, and the regression model is used in an optimization model to minimize the ship turnaround time.

Details

Maritime Business Review, vol. 5 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 15 December 2017

Maxim A. Dulebenets

The volumes of international containerized trade substantially increased over the past years. In the meantime, marine container terminal (MCT) operators are facing congestion…

1107

Abstract

Purpose

The volumes of international containerized trade substantially increased over the past years. In the meantime, marine container terminal (MCT) operators are facing congestion issues at their terminals because of the increasing number of large-size vessels, the lack of innovative technologies and advanced handling equipment and the inability of proper scheduling of the available resources. This study aims to propose a novel memetic algorithm with a deterministic parameter control to facilitate the berth scheduling at MCTs and minimize the total vessel service cost.

Design/methodology/approach

A local search heuristic, which is based on the first-come-first-served policy, is applied at the chromosomes and population initialization stage within the developed memetic algorithm (MA). The deterministic parameter control strategy is implemented for a custom mutation operator, which alters the mutation rate values based on the piecewise function throughout the evolution of the algorithm. Performance of the proposed MA is compared with that of the alternative solution algorithms widely used in the berth scheduling literature, including a MA that does not apply the deterministic parameter control strategy, typical evolutionary algorithm, simulated annealing and variable neighborhood search.

Findings

Results demonstrate that the developed MA with a deterministic parameter control can obtain superior berth schedules in terms of the total vessel service cost within a reasonable computational time. Furthermore, greater cost savings are observed for the cases with high demand and low berthing capacity at the terminal. A comprehensive analysis of the convergence patterns indicates that introduction of the custom mutation operator with a deterministic control for the mutation rate value would provide more efficient exploration and exploitation of the search space.

Research limitations/implications

This study does not account for uncertainty in vessel arrivals. Furthermore, potential changes in the vessel handling times owing to terminal disruptions are not captured.

Practical implications

The developed solution algorithm can serve as an efficient planning tool for MCT operators and assist with efficient berth scheduling for both discrete and continuous berthing layout cases.

Originality/value

The majority of studies on berth scheduling rely on the stochastic search algorithms without considering the specific problem properties and applying the guided search heuristics. Unlike canonical evolutionary algorithms, the developed algorithm uses a local search heuristic for the chromosomes and population initialization and adjusts the mutation rate values based on a deterministic parameter control strategy for more efficient exploration and exploitation of the search space.

Details

Maritime Business Review, vol. 2 no. 4
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 7 March 2023

Branislav Dragović, Nenad Zrnić, Ernestos Tzannatos, Nenad Kosanić and Andro Dragović

The paper undertakes a bibliometric analysis and assessment of journal publications in the field of container terminal operations research (CTOR), in an attempt to identify…

Abstract

Purpose

The paper undertakes a bibliometric analysis and assessment of journal publications in the field of container terminal operations research (CTOR), in an attempt to identify high-impact papers (HIPs) published in Science Citation Index/Social Science Citation Index (SCI/SSCI) journals of CTOR subject category from 1973 to 2020.

Design/methodology/approach

A structured approach for identifying the HIPs is developed based on the utilization of bibliometric and network analyses.

Findings

The CTOR papers are assessed in terms of publication outputs, distribution of outputs in SCI/SSCI journals, authorship, institutions and countries, as well as citation life cycles of papers with the highest total citations since their publication until the year 2020. The results show that between 1989 and 2015, there were 82 HIPs in the field of CTOR, which have been cited at least 200 times, with more than 50% of these citations allocated in the second part of paper citation life cycle according to the database of Google Scholar.

Practical implications

The practical implication of the aforementioned reviewing and assessing journal publications of CTOR is that it offers the ability to reveal the tone of its development through addressing main characteristics of the relevant HIPs as determined by the highly cited papers in this field of research.

Originality/value

This paper offers a unique analysis and assessment in the field of CTOR by identifying the relevant HIPs and their associated scientific actors (authors, institutions and countries), thus facilitating the future research effort in the field of CTOR.

Details

Maritime Business Review, vol. 8 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Article
Publication date: 3 August 2018

Zhengxu Wang and Chonghui Guo

In seaport industries, vessel arrival delay is inevitable because of numerous factors, e.g. weather, delay due to the previous stop, etc. The period of delay can be as short at…

Abstract

Purpose

In seaport industries, vessel arrival delay is inevitable because of numerous factors, e.g. weather, delay due to the previous stop, etc. The period of delay can be as short at 15 min of as long as a few days. This causes disruption to the planned sea operation operations, and more importantly, to the resources utilization. In traditional berth allocation and quay crane assignment problems (BA-QCA), the risk of vessel arrival delay has not been considered. Accordingly, the purpose of this paper is to employ a proactive planning approach by taking into consideration the vessel arrival delay into the optimization of BA-QCA problems.

Design/methodology/approach

In the existing BA-QCA problems, vessel arrival time is usually deterministic. In order to capture the uncertainties of arrival delay, this paper models the arrival time as a probability distribution function. Moreover, this paper proposes to model the delay risk by using the period between the expected arrival time and the expected waiting time of a vessel. Lastly, the authors propose a new modified genetic algorithm and a new quay crane assignment heuristic to maximize the schedule reliability of BA-QCA.

Findings

A number of numerical experiments are conducted. First of all, the optimization quality of the proposed algorithm is compared with the traditional genetic algorithm for verifying the correctness of the optimization approach. Then, the impact of vessel arrival delay is tested in different scenarios. The results demonstrate that the impact of vessel arrival delay can be minimized, especially in the situations of high vessel to potential berth ratio.

Research limitations/implications

The proposed vessel arrival modeling approach and the BA and QCA approach can increase the operations efficiency of seaports. These approaches can increase the resource utilization by reducing the effect of vessel arrival delay. In other words, this can improve the throughput of seaport terminals.

Originality/value

This paper proposes to minimize the delay risk based on the conditional probability of the vessel completion time based on the previous vessel at the assigned berth. This modeling approach is new in literature.

Details

Industrial Management & Data Systems, vol. 118 no. 7
Type: Research Article
ISSN: 0263-5577

Keywords

Book part
Publication date: 12 January 2012

Ioannis N. Lagoudis

There is significant amount of literature tackling different issues related to the port industry. The present chapter focuses on a single business unit of seaports aiming at the…

Abstract

There is significant amount of literature tackling different issues related to the port industry. The present chapter focuses on a single business unit of seaports aiming at the documentation of works related to container terminals.

An effort to review, collect and present the majority of the works present in the last 30 years, between 1980 and 2010, has been made in order to picture the problems dealt and methods used by the authors in the specific research field. To facilitate the reader, studies have been grouped under five categories of addressed problems (productivity and competitiveness, yard and equipment utilization, equipment scheduling, berth planning, loading/unloading) and four modelling methodologies (mathematics and operations research, management and economics, simulation, stochastic modelling).

The analysis shows that most works focus on productivity and competitiveness issues followed by yard and equipment utilisation and equipment scheduling. In reference to the methodologies used managerial and economic approaches lead, followed by mathematics and operations research.

In reference to future research, two fields have been identified where there is scope of significant contribution by the academic community: container terminal security and container terminal supply chain integration.

The present chapter provides the framework for researchers in the field of port container terminals to picture the so far works in this research area and enables the identification of gaps at both research question and methodology level for further research.

Details

Maritime Logistics
Type: Book
ISBN: 978-1-78052-340-8

Keywords

Content available
Article
Publication date: 3 December 2019

Masoud Kavoosi, Maxim A. Dulebenets, Olumide Abioye, Junayed Pasha, Oluwatosin Theophilus, Hui Wang, Raphael Kampmann and Marko Mikijeljević

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting…

1557

Abstract

Purpose

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT.

Design/methodology/approach

A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands.

Findings

The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s.

Research limitations/implications

Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic.

Practical implications

The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time.

Originality/value

A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions.

1 – 10 of 179