Search results

1 – 10 of 305
Article
Publication date: 13 July 2012

A.A. Javadi, M.M. Sherif and H.F. Abd‐Elhamid

Seawater intrusion represents a major problem in many coastal aquifers all over the world. It degrades the water‐quality and hence the groundwater may become unsuitable for…

Abstract

Purpose

Seawater intrusion represents a major problem in many coastal aquifers all over the world. It degrades the water‐quality and hence the groundwater may become unsuitable for domestic and agriculture purposes. Due to the direct hydraulic contact between the freshwater and saline water in coastal aquifers and the density difference between the two water bodies, the seawater migrates inland. The problem is exacerbated when the groundwater abstraction rates exceed the natural recharge from rainfall events. The key to controlling this problem is to maintain the proper balance between water being pumped from the aquifer and the amount of water recharging it. The purpose of this paper is to present a coupled transient finite element model for simulation of fluid flow and solute transport in soils with application to study seawater intrusion in coastal aquifers.

Design/methodology/approach

The model includes coupling of fluid flow and solute transport. Transient density‐dependent flow and the dependency of dispersion on velocity are considered. After validation, the model is applied to predict the seawater intrusion in the Wadi Ham aquifer, UAE in vertical sections and the results are compared with those from a commercial code (SEWAT) which was used to simulate seawater intrusion in the aquifer in a horizontal section.

Findings

A good agreement is observed between the results of the current model in the vertical cross‐section and those of SEWAT in the horizontal cross‐section for the case of Wadi Ham. The results show that the model can predict the extent of seawater intrusion (and the transition zone) and distribution of salt concentration in the aquifer with a good accuracy.

Originality/value

The developed model includes coupling of fluid flow and solute transport in saturated and unsaturated porous media. Transient density‐dependent flow and the dependency of dispersion on velocity are considered. The model has been applied to a real world case study. A combination of the results in vertical and horizontal sections has been used to build a 3D picture of seawater intrusion in the aquifer.

Article
Publication date: 31 May 2021

Farid Terbouche, Ali Hamza and Smail Gabi

The purpose of this paper is the analysis of the dissipation of pore water pressures in the core of an earth dam, under the effect of water level fluctuations in the reservoir…

Abstract

Purpose

The purpose of this paper is the analysis of the dissipation of pore water pressures in the core of an earth dam, under the effect of water level fluctuations in the reservoir under operating conditions, taking into account the partial emptying and filling.

Design/methodology/approach

The Taksebt Dam, Tizi-Ouzou, Algeria was chosen as a case study, using a two-dimensional transient finite element numerical model. The GeoStudio calculation software is used through the SEEP/W. The latter takes into account the flow in the saturated and unsaturated zone, the formulation of SEEP/W allows the analysis of the dissipation of pore water pressures in the dyke. Starting from the maximum level of the reservoir, at least one cycle of partial emptying-filling was modelled over an eight-year operating period from 2011 to 2019. The input variables were the water level variation curve, material properties and boundary conditions.

Findings

It can be concluded that the numerical results obtained from the simulation model on the different points studied, namely, the pore water pressures are satisfactory as long as they are close to those recorded in the field by the pore pressure cells with an average error not exceeding 10% except for some measurements where the error is 20%. When the water level in the reservoir varies, the pore water pressures vary and their behaviour follows these fluctuations. Some points in the dam are affected by negative pore water pressures. No abnormal situations have been detected pore water pressures.

Originality/value

The numerical results of the simulation are analysed and validated against actual pore pressure cell measurements under operating conditions.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2004

Xuanxi Ning

In the research work on blocking flow, the concept of minimum flow of a two‐terminal network was introduced. In this paper, a kind of special blocking flow – the concept of…

Abstract

In the research work on blocking flow, the concept of minimum flow of a two‐terminal network was introduced. In this paper, a kind of special blocking flow – the concept of minimum spanning flow in the network is introduced and its construction method studied. Here, we show that it is easy to determine whether there is a minimum spanning flow in a network in polynomial time, but it is hard to determine whether there is a non‐circuit minimum spanning flow in one step. Fortunately, the latter problem can be solved in two steps, and its self‐organizing principle is put forward. The feasibility of the algorithm developed on this principle was proved by about 4,500 examples. The significance of this research work is pointed at last.

Details

Kybernetes, vol. 33 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 November 1996

Dariusz Gawin, Bernhard A. Schrefler and M. Galindo

Presents a fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in deforming partially saturated porous materials. Makes use of…

1491

Abstract

Presents a fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in deforming partially saturated porous materials. Makes use of the modified effective stress concept together with the capillary pressure relationship. Examines phase changes (evaporation‐condensation(, heat transfer through conduction and convection, as well as latent heat transfer. The governing equations in terms of gas pressure, capillary pressure, temperature and displacements are coupled non‐linear differential equations and are discretized by the finite element method in space and by finite differences in the time domain. The model is further validated with respect to a documented experiment on partially saturated soil behaviour, and the effects of two‐phase flow, as compared to the one‐phase flow solution, are analysed. Two other examples involving drying of a concrete wall and thermoelastic consolidation of partially saturated clay demonstrate the importance of proper physical modelling and of appropriate choice of the boundary conditions.

Details

Engineering Computations, vol. 13 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 April 2022

Manjeet Kumar, Xu Liu, Manjeet Kumari and Poonam Yadav

The purpose of this paper is to investigate propagation characteristics of seismic waves at the welded interface of an elastic solid and unsaturated poro-thermoelastic solid.

Abstract

Purpose

The purpose of this paper is to investigate propagation characteristics of seismic waves at the welded interface of an elastic solid and unsaturated poro-thermoelastic solid.

Design/methodology/approach

A theoretical formulation of partially saturated poro-thermoelastic solid is used in this study established by Zhou et al. (2019). The incidence of two primary waves (P and SV) is taken. The incident wave from the elastic solid induces two reflected waves and five refracted waves. Due to viscous pore fluids, partially saturated poro-thermoelastic solid behave dissipative, whereas elastic solid behaves non-dissipative. As a result, both reflected and incident waves are homogeneous. However, all the refracted waves are inhomogeneous. A non-singular system of linear equations is formed by the coefficients of reflection and refraction for a specified incident wave. The energy shares of various reflected and refracted waves are determined by using these reflection and refraction factors. Finally, a sensitivity analysis is performed, and the effect of critical variables on energy partitioning at the interface is observed. The numerical example shows that throughout the process of reflection/refraction, the energy of incidence is conserved at all angles of incidences.

Findings

This study demonstrated two refracted (homogeneous) and five refracted (inhomogeneous) waves due to the incident wave from elastic solid. The reflection and refraction coefficients and partitioning of incident energy are acquired as a part of diverse physical parameters of the partially saturated poro-thermoelastic media. The interference energies between unlike pairs of refracted waves have been discovered due to the dissipative behavior of unsaturated poro-thermoelastic solid.

Originality/value

The sensitivity of different energy shares to various aspects of the considered model is graphically analyzed for a specific numerical model. The energy balance is maintained by combining interaction energy and bulk wave energy shares.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 May 2019

Leila Mechkarini, Tahar Messafer, Abderrahim Bali and Kamel Silhadi

Prediction models for the unsaturated permeability proposed in the literature are numerous. However, a model may give a good result for a sample of a given soil when it may give a…

Abstract

Purpose

Prediction models for the unsaturated permeability proposed in the literature are numerous. However, a model may give a good result for a sample of a given soil when it may give a bad result for another sample belonging to the same type of soil. This showed that the choice of a model to complete the permeability curve in the unsaturated state is complex. To facilitate such studies, this paper aims to present a help system capable of defining the mathematical model to the user that best represents the permeability of the soil.

Design/methodology/approach

The authors have detailed the difficulties in determining the correct value of kuns from a thorough bibliographic study. To develop this idea, the authors took real examples, to which they applied mathematical models and then compared their results with those of the bibliographic study. Knowledge structuring in the form of classes, rules and functions. Implementation of the data in generator of help system Kappa-pc. validation of results.

Findings

An aid tool was developed for the evaluation of unsaturated soils permeability using Brooks and Corey (1964) and Leong and Rahardjo (1997) models, which are known for their effectiveness and ease of application. This system will also evaluate these two methods using estimation models of saturated permeability [Dane and Pocket (1992), Terzaghi (1981) and laboratory data]. This system allows the evaluation of unsaturated permeability by the aforementioned two models, makes comparison between these two models, classifies them and proposes the model presenting the best result.

Originality/value

This aid system is able to compare results of different models of prediction of the hydraulic conductivity of unsaturated soils according to several criteria (suction, degree of saturation, plasticity index, models of estimation of the permeability to the soil, saturated state, particle size, etc.). It can also deduce the model that best adapts to a given soil. This aid system will be of great use for geotechnical engineers and researchers in the field.

Article
Publication date: 1 June 1995

Bernard A. Schrefler, Xiaoyong Zhan and Luciano Simoni

A fully coupled numerical model to simulate the complexbehaviour of soil deformation, water flow, airflow, and heatflow in porous media is developed. The following thermal…

Abstract

A fully coupled numerical model to simulate the complex behaviour of soil deformation, water flow, airflow, and heat flow in porous media is developed. The following thermal effects are taken into account: heat transfer through conduction and convection, flow, as well as viscosity and density variation of the fluids due to temperature gradients. The governing equations in terms of soil displacements, water and air pressures, and temperature are coupled non‐linear partial differential equations and are solved by the finite element method. Two examples are presented to demonstrate the model performances.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2015

Ke Wan and Xikui Li

The purpose of this paper is to extend the bridge scale method (BSM) developed for granular materials with only the solid phase to that taking into account the effects of wetting…

Abstract

Purpose

The purpose of this paper is to extend the bridge scale method (BSM) developed for granular materials with only the solid phase to that taking into account the effects of wetting process in porous continuum. The granular material is modeled as partially saturated porous Cosserat continuum and discrete particle assembly in the coarse and fine scales, respectively.

Design/methodology/approach

Based on the mass and momentum conservation laws for the three phases, i.e. the solid skeleton, the pore water and the pore air, the governing equations for the unsaturated porous Biot-Cosserat continuum model in the coarse scale are derived. In light of the passive air pressure assumption, a reduced finite element model for the model is proposed. According to the decoupling of the fine and coarse scale calculations in the BSM, the unsaturated porous Cosserat continuum model using the finite element method and the discrete element model using the discrete element method for granular media are combined.

Findings

The numerical results for a 2D example problem of slope stability subjected to increasing rainfall along with mechanical loading demonstrate the applicability and performance of the present BSM. The microscopic mechanisms of macroscopic shear band developed in the slope are demonstrated.

Research limitations/implications

Do not account for yet the effects of unsaturated pore water in the fine scale.

Originality/value

The novel BSM that couples the Biot-Cosserat porous continuum modeling and the discrete particle assembly modeling in both coarse and fine scales, respectively, is proposed to provide a micro-macro discrete-continuum two-scale modeling approach for numerical simulations of the hydro-mechanical coupling problems in unsaturated granular materials.

Article
Publication date: 5 September 2021

Manjeet Kumar, Xu Liu, Kapil Kumar Kalkal, Virender Dalal and Manjeet Kumari

The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such…

Abstract

Purpose

The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such media..

Design/methodology/approach

The mathematical model evolved by Zhou et al. (2019) is solved through the Helmholtz decomposition theorem. The propagation velocities of bulk waves in partially saturated poro-thermoelastic media are derived by using the potential functions. The phase velocities and attenuation coefficients are expressed in terms of inhomogeneity angle. Reflection characteristics (phase shift, loci of vertical slowness, amplitude, energy) of elastic waves are investigated at the stress-free thermally insulated boundary of a considered medium. The boundary can be permeable or impermeable. The incident wave is portrayed with both attenuation and propagation directions (i.e. inhomogeneous wave). Numerical computations are executed by using MATLAB.

Findings

In this medium, the permanence of five inhomogeneous waves is found. Incidence of the inhomogeneous wave at the thermally insulated stress-free surface results in five reflected inhomogeneous waves in a partially saturated poro-thermoelastic media. The reflection coefficients and splitting of incident energy are obtained as a function of propagation direction, inhomogeneity angle, wave frequency and numerous thermophysical features of the partially saturated poro-thermoelastic media. The energy of distinct waves (incident wave, reflected waves) accompanying interference energies between distinct pairs of waves have been exhibited in the form of an energy matrix.

Originality/value

The sensitivity of propagation characteristics (velocity, attenuation, phase shift, loci of vertical slowness, energy) to numerous aspects of the physical model is analyzed graphically through a particular numerical example. The balance of energy is substantiated by virtue of the interaction energies at the thermally insulated stress-free surface (opened/sealed pores) of unsaturated poro-thermoelastic media through the bulk waves energy shares and interaction energy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1995

D.R.J. Owen, S.Y. Zhao and J.G. Loughran

A finite element solution to the rolling of two‐phase materials ispresented and applied to the rolling of prepared sugar cane. The generalizedBiot theory is extended and modified…

Abstract

A finite element solution to the rolling of two‐phase materials is presented and applied to the rolling of prepared sugar cane. The generalized Biot theory is extended and modified to suit the present problem and the velocity of the solid skeleton and the pore pressure are taken as the primary unknowns. The finite element approach is applied to the governing equations for spatial discretization, followed by time domain discretization by standard difference methods. A constitutive relation evaluated from a finite element simulation of experiments performed on a constrained compression test cell is employed. The computational model of the rolling of prepared cane with two rolls is presented. The material parameters of prepared cane are described and their variation during the rolling process are derived and discussed. Numerical results are presented to illustrate the performance and capability of the model and solution procedures.

Details

Engineering Computations, vol. 12 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 305